
User Guide

Version Number 5.1

Active@ UNDELETE v 5.1 END-USER LICENSE AGREEMENT

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Copyright (c) 1998-2004 Active Data Recovery Software

All rights reserved. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IMPORTANT-READ CAREFULLY: This End-User License Agreement (“EULA”) is a legal agreement between you (either an individual or a
single entity) and The Active Data Recovery Software for the Active@ UNDELETE later referred to as 'SOFTWARE'. By installing, copying, or
otherwise using the SOFTWARE you agree to be bound by the terms of this EULA. If you do not agree to the terms of this EULA, do not install or
use the SOFTWARE.

WE REQUIRE ALL OUR DEALERS TO PROVIDE EACH PURCHASER WITH FREE DEMO OF THE SOFTWARE TO GET A FULL
UNDERSTANDING OF THE CAPABILITIES AND THE EASE OF USE OF THE SOFTWARE. OUR DEALERS HAD TO RECOMMEND
YOU TO DOWNLOAD DEMO. WE WON'T ISSUE ANY REFUNDS AFTER PURCHASING FULL VERSION OF THE SOFTWARE.

Active Data Recovery Software may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. The furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

SOFTWARE LICENSE

1. The SOFTWARE is licensed, not sold. Copyright laws and international copyright treaties, as well as other intellectual property laws and treaties
protect the SOFTWARE.

2. GRANT OF LICENSE.

(a) FREE DEMO COPY. You may use the full featured DEMO SOFTWARE without charge on an evaluation basis to recover any files having size
less than 64Kb. You must pay the license fee and register your copy to recover files bigger than 64Kb in size.

(b) REDISTRIBUTION OF DEMO COPY. If you are using DEMO SOFTWARE on an evaluation basis you may make copies of the DEMO
SOFTWARE as you wish; give exact copies of the original DEMO SOFTWARE to anyone; and distribute the DEMO SOFTWARE in its unmodified
form via electronic means (Internet, BBS's, Shareware distribution libraries, CD-ROMs, etc.). You may not charge any fee for the copy or use of the
evaluation DEMO SOFTWARE itself, but you may charge a distribution fee that is reasonably related to any cost you incur distributing the DEMO
SOFTWARE (e.g. packaging). You must not represent in any way that you are selling the software itself. Your distribution of the DEMO
SOFTWARE will not entitle you to any compensation from Active Data Recovery Software. You must distribute a copy of this EULA with any copy
of the Software and anyone to whom you distribute the SOFTWARE is subject to this EULA.

(c) REGISTERED COPY. After you have purchased the license for SOFTWARE, and have received the registration key and the SOFTWARE
distribution package, you are licensed to copy the SOFTWARE only into the memory of the number of computers corresponding to the number of
licenses purchased. The primary user of the computer on which each licensed copy of the SOFTWARE is installed may make a second copy for his or
her exclusive use on a portable computer. Under no other circumstances may the SOFTWARE be operated at the same time on more than the number
of computers for which you have paid a separate license fee. You may not duplicate the SOFTWARE in whole or in part, except that you may make
one copy of the SOFTWARE for backup or archival purposes. You may terminate this license at any time by destroying the original and all copies of
the SOFTWARE in whatever form. You may permanently transfer all of your rights under this EULA provided you transfer all copies of the
SOFTWARE (including copies of all prior versions if the SOFTWARE is an upgrade) and retain none, and the recipient agrees to the terms of this
EULA.

3. RESTRICTIONS. You may not reverse engineer, decompile, or disassemble the SOFTWARE, except and only to the extent that such activity is
expressly permitted by applicable law notwithstanding this limitation. You may not rent, lease, or lend the SOFTWARE. You may permanently
transfer all of your rights under this EULA, provided the recipient agrees to the terms of this EULA. You may not use the SOFTWARE to perform
any unauthorized transfer of information (e.g. transfer of files in violation of a copyright) or for any illegal purpose.

4. SUPPORT SERVICES. Active Data Recovery Software may provide you with support services related to the SOFTWARE. Use of Support
Services is governed by the Active Data Recovery Software polices and programs described in the online documentation and web site, and/or other
Active Data Recovery Software-provided materials, as they may be modified from time to time. Any supplemental software code provided to you as
part of the Support Services shall be considered part of the SOFTWARE and subject to the terms and conditions of this EULA. With respect to
technical information you provide to Active Data Recovery Software as part of the Support Services, Active Data Recovery Software may use such
information for its business purposes, including for product support and development. Active Data Recovery Software will not utilize such technical
information in a form that personally identifies you.

5. TERMINATION. Without prejudice to any other rights, Active Data Recovery Software may terminate this EULA if you fail to comply with the
terms and conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE.

6. COPYRIGHT. The SOFTWARE is protected by copyright law and international treaty provisions. You acknowledge that no title to the intellectual
property in the SOFTWARE is transferred to you. You further acknowledge that title and full ownership rights to the SOFTWARE will remain the
exclusive property of Active Data Recovery Software and you will not acquire any rights to the SOFTWARE except as expressly set forth in this
license. You agree that any copies of the SOFTWARE will contain the same proprietary notices which appear on and in the SOFTWARE.

7. DISCLAIMER OF WARRANTY. Active Data Recovery Software expressly disclaims any warranty for the SOFTWARE. THE SOFTWARE
AND ANY RELATED DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OR MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE
SOFTWARE REMAINS WITH YOU.

8. LIMITATION OF LIABILITY. IN NO EVENT SHALL ACTIVE DATA RECOVERY SOFTWARE OR ITS SUPPLIERS BE LIABLE TO
YOU FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES OF ANY KIND ARISING OUT OF THE
DELIVERY, PERFORMANCE, OR USE OF THE SOFTWARE, EVEN IF ACTIVE DATA RECOVERY SOFTWARE HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. IN ANY EVENT, ACTIVE DATA RECOVERY SOFTWARE'S ENTIRE LIABILITY UNDER ANY
PROVOSION OF THIS EULA SHALL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT.

Active Data Recovery Software reserves all rights not expressly granted here.

Active Data Recovery Software is a registered business name of LSoft Technologies Inc.

http://www.lsoft.net

Contents

GETTING STARTED WITH ACTIVE@ UNDELETE
Overview of the Application ..1

What's New in Active@ UNDELETE ...1
Starting Active@ UNDELETE ..1
Data Recovery Tips ...1

ACTIVE@ UNDELETE EXPLORER

Explorer Overview...3
Navigation with Active@ UNDELETE Explorer ...3
Toolbar Commands..5
Command Menu ..6

Explorer Tool Views ..7
Application Log ..8
Properties View..8
Search ...9
Disk Hex Editor ..10
Drag’n’Drop Recovery ...11

Options Dialog Box ...13
Symbols and Icons Used in the Explorer ..14
Connecting to Active@ Remote Recovery Agent ...16

USING ACTIVE@ UNDELETE

Outline of UNDELETE Steps ..17
Scanning Drives and Devices ...17

Scanning Drives for Deleted Files or Folders ..18
Scanning Physical Devices for Partitions and Drives. ...18

Searching for Deleted Files and Folders...21
Simple Search ...21
Advanced Search ..22

Recovering Files and Folders ...27
Recovering Encrypted F .. iles28

Other Active@ UNDELETE Tools ...29
File Preview ...29
Save Hardware Diagnostic File ...29
Disk Images ...30
Virtual Drives..32
Virtual Disk Arrays ...34

ACTIVE@ UNDELETE WIZARDS

Virtual Disk Array Wizard ..35
Create Disk Image Wizard ..38

iv
Open Disk Image Wizard.. 40

ACTIVE@ UNDELETE NETWORK EDITION

Active@ Remote Recovery Agent. Overview... 43
Using Active@ Remote Recovery Agent .. 44
Active@ Remote Recovery Agent Options ... 46

UNDERSTANDING ADVANCED UNDELETE PROCESS

Overview... 47
Disk Scanning ... 49
Defining the Chain of Clusters... 53
Recovering the Chain of Clusters.. 54

DATA RECOVERY CONCEPTS

Hard Disk Drive Basics... 57
Making Tracks ... 57
Sectors and Clusters ... 58

The FAT File System .. 59
Structure of a FAT Volume... 59
File Allocation System... 61
FAT Root Folder .. 62
FAT Folder Structure ... 62
FAT32 Features... 64

The NTFS File System ... 73
NTFS Partition Boot Sector ... 74
NTFS Master File Table (MFT).. 77
NTFS File Types.. 78

The File Recovery Process .. 85
Disk Scanning for Deleted Entries... 86
Defining the Chain of Clusters... 89
Recovering the Chain of Clusters.. 91

The Partition Recovery Process ... 93
System Boot Process .. 93
MBR is Damaged .. 94
Partition is Deleted or Partition Table is Damaged .. 97
Partition Boot Sector is Damaged ... 99
Missing or Corrupted System Files ... 101

1
 GETTING STARTED WITH
ACTIVE@ UNDELETE
This chapter gives an overview of Active@ UNDELETE application.

Overview of the
Application

Active@ UNDELETE is a powerful application designed to restore accidentally
deleted files and folders located on existing drives, and even on deleted or
damaged partitions.

What's New in
Active@ UNDELETE

With version 5.1, LSoft Technologies introduces a new generation of Data
Recovery software with enhanced scanning and restoring features as well as:

• Restoring damaged or deleted files and folders

• Creating Disk Image files and restoring from Disk Image

• Searching for deleted files using Advanced Search options

• Recovering data from damaged RAID-system drives

• Recovering remotly using Active@ Remote Recovery Agent

• Editing disk content with Hex Disk Editor

• and much more...

Getting Started With the User Guide

To take full advantage of Active@ UNDELETE, it is helpful to understand what
this application can do for you. Here are some of the topics covered in this
guide:

• Recovering Files and Folders

• Creating and Opening Disk Images

• Using Advanced Search

• Using Active@ Remote Recovery Agent

Starting Active@
UNDELETE

Active@ UNDELETE works in the Microsoft Windows environment. After the
program has been installed, use Microsoft Start > All Programs to open
Active@ UNDELETE.

Read the next chapter for details about the Active@ UNDELETE Explorer.

Data Recovery Tips PROTECT THE DRIVE LOCATION WHERE YOU HAVE ACCIDENTALLY
DELETED FILES. Any program that writes data to the disk, even the installation
of data recovery software can spoil your sensitive data.

2 CHAPTER 1: GETTING STARTED WITH ACTIVE@ UNDELETE
DO NOT SAVE DATA ONTO THE SAME DRIVE THAT YOU FOUND ERASED
DATA, WHICH YOU ARE TRYING TO RECOVER! While saving recovered
data onto the same drive where sensitive data was located, you can spoil the
process of recovering by overwriting table records for this and other deleted
entries. It is better to save data onto another logical, removable, network or
floppy drive.

IF YOU HAVE AN EXTRA HARD DRIVE, OR OTHER LOGICAL DRIVES
THAT ARE BIG ENOUGH, CREATE A DISK IMAGE. A Disk Image is a
single-file mirror copy of the contents of your logical drive. Backing up the
contents of the whole drive - including deleted data - is a good safety
precaution in case of failed recovery. Before you start recovering deleted files,
create a Disk Image for this drive.

2
 ACTIVE@ UNDELETE
EXPLORER
This chapter describes the features and functions of Active@ UNDELETE.

Explorer Overview Active@ UNDELETE Explorer is designed to probe and browse all data storage
devices installed on your computer in different ways to find and recover lost or
damaged data.

• Active@ UNDELETE Explorer displays the hierarchical structure of your
current drives, devices and folders. Some of this information is shown in:

• Tree and File Panes

• Tool Views

• Status bar information at the bottom of the Explorer window

• Explorer uses symbols to provide visual cues about the status of drives,
devices, folders and other items

• Explorer toolbar provides a quick way to execute frequently-used
commands as well as a standard command menu

Navigation with
Active@ UNDELETE

Explorer

To use Active@ UNDELETE Explorer efficiently, read the following section
about the main display screen.

The Explorer main screen is divided into three areas:

• Tool Views

• Tree Pane

• File Panes

4 CHAPTER 2: ACTIVE@ UNDELETE EXPLORER
The figure below helps illustrate the three areas:

Figure 2-1 Active@ UNERASER Main Screen

A description of these areas follows:

Tree Pane

The two main folders in this tree are named Local Drives and Local Devices.

• Local Drives - All logical drives recognized by the operating system. You
can perform these tasks:

• Browse the accessible logical drive tree for a specific drive location

• Scan logical drives for deleted or damaged areas

• Create a local drive Disk Image

• Local Devices - All physical devices attached to the system. Here you can
perform these tasks:

• Browse accessible physical devices for a specific device

• Scan a device, using one of the three available scan methods

• Create a device Disk Image

• Browse the hierarchical structure of devices, partitions, drives and so on

It is easy to switch between logical drives and physical devices in the same tree
pane.

Explorer Overview 5
File Pane

The File Pane is used to display the detail elements of the currently selected
tree item. In this pane you can sort the displayed list by clicking on column
header. The column by which the list has been sorted will be highlighted.

Tool Views

The Tool Views extend the detail level of selected elements and provide
additional tools in the context of your navigation.

Toolbar Commands The table below describes commands found on the toolbar:

Table 2-1 Toolbar Commands

Toolbar Command Name Description

Scan Default scan of selected Item...

Stop Process Cancel any concurrent process

Recover Initiate recovery process for selected item

RAID Starts Virtual Disk Array (RAID) wizard

Save Disk Image Starts Creation DIsk Image Wizard for
selected item

Open Disk
Image

Start Open Disk Image Wizard

File Preview Opens File Preview window for selected file

Help Opens the online help file

6 CHAPTER 2: ACTIVE@ UNDELETE EXPLORER
Command Menu The table below describes commands found in the menus on the command
menu bar:

Table 2-2 Command Menu Commands

Command
Menu Item Icon Command Description

Action Scan Initiate scan process for context item.

Stop Stop or cancel any current process such
as scanning, searching etc.

Recover Initiate Recovery process for context item.

Save PC Info Save data storage devices’ diagnostic
information into the file.

Connect Connect to Active@ Remote Recovery
Agent.

Exit Close the application.

Edit Add Virtual
Partition

Create a virtual partition under selected
device.

Load Partition Info Load previously saved partition info for
selected device.

Save Partition Info Save Partition Info (all detected or created
virtual partitions) for selected device.

Active Table Set Active Table for selected partition. It
can be FAT1 or FAT2 for FAT or $MFT or
@MFT Mirror for NTFS.

Duplicate Partition
Info

Create a copy of selected partition with
corresponding device as virtual partition.

Modify Partition
Info

Open a dialog box that allows you to
modify selected partition properties.

Delete Partition
Info

Delete selected virtual (detected) partition
form corresponding device.

Open in Hex
Editor

Opens selected item for editing in Disk Hex
Editor.

View Application Log Show or hide Application Log view.

Property View Show or hide Property view.

Search View Show or hide Search view.

Drag’n’Drop
Recovery

Show or hide Drag and Drop Recovery
view.

Disk Hex Editor Show or hide Disk HEX Editor view.

File Preview Show File Preview for context file item.

Explorer Tool Views 7
Explorer Tool
Views

Active@ UNDELETE Explorer Tool Views give you the ability to see additional
information about navigated items, observe data flow and get access to most
advanced features of Active@ UNDELETE.

Access Explorer Tool Views by selecting tabs at the bottom of the Explorer
window. The tabs are labelled as follows:

• Application Log

• Properties View

• Search

• Disk HEX Editor

• Drag’n’Drop Recovery

Detailed descriptions about each Explorer Tool View window appears below:

Properties Show properties of context item.

Refresh Reload active Explorer tree.

Tool

Create Disk
Image...

Start Create Disk Image wizard for context
item.

Open Disk Image Start Open Disk Image wizard.

Restore
Encrypted

Open Restore Encrypted dialog.

Options Shows the application Options dialog.

Help Contents... Open application help documentation at
start page.

Help Online... Open local online help documentation.

Technical Support Go to technical support web page.

Active@
UNDELETE
Online

Open Active@ UNDELETE web home
page.

Active@
UNDELETE
Upgrades

Open Active@ UNDELETE web page with
latest support updates.

About... Open application help documentation at
start page.

Command
Menu Item Icon Command Description

8 CHAPTER 2: ACTIVE@ UNDELETE EXPLORER
Application Log This log screen monitors each action taken by the application and displays
messages, notifications and other service information. Use the messages in
this screen to observe and further understand the flow of the recovery process.

Figure 2-2 Application Log

The toolbar buttons are provided for convenience.

Save Log Save the application log contents in a text file. You will be
prompted for a path to save this file.

Clear Log Remove all notes from the Application Log view and start with a
clean pane.

Properties View Properties View displays detailed information about the selected item.

Figure 2-3 Properties View

To display the Properties View of any item in Active@ UNDELETE Explorer, do
any one of the following:

• If Properties View is active, select any item and view its properties.

• If Properties View is not active, select any item in the Explorer. From the
Command menu toolbar, click View > Properties.

• Right-click any item in the Explorer. Click Properties from the context menu.

Explorer Tool Views 9
• With any item selected, click the Property View tab in Active@ UNDELETE
Explorer.

As long as the Property View tab is active, selecting another item automatically
displays information about it in Property view.

Search The Search Results view is using for review search result after performing the
search under selected context.

Figure 2-4 Search Results

There are two types of search:

• Simple Search for Files and Folders

After completing the scanning process, you can search for files and folders
by entering search criteria in the Look for: field, located in the Search Bar at
the top of the Explorer. Select a folder in the File pane, then click Search in
to initiate search process.

• Advanced Search

This search uses more options such as Creation Date, Size, Registered File
Type and more, as searching criteria.

After a search has completed, the results appear as a list in the Search Results
view. These files and folders can be opened for Hex viewing in Preview File.
They can also be recovered. Recover files one-by-one or you can select check
boxes for a number of files or folders and then apply recovery for all of them.

(i) Note: If you want to search a drive that has not yet been scanned, the drive will be
scanned using Simple Scan before searching.

10 CHAPTER 2: ACTIVE@ UNDELETE EXPLORER
Disk Hex Editor Disk Hex Editor uses a simple, low-level disk viewer which displays information
in binary and text modes at the same time. You can use this view to analyze the
contents of data storage structure elements such as:

• Hard disk drives

• Floppy drives

• Partitions

• Files

• Other objects

To open any of these items in the editor, select an item in Active@ UNDELETE
Explorer tree pane or file pane and do one of the following:

• In the command menu, click Edit > Open In Hex Editor

• Right-click the item. Click Open In Hex Editor from the context menu.

The Disk Hex Editor screen appears, similar to the figure below:

Figure 2-5 Disk Hex Editor

Using this editor you can browse through the content of the open item using the
scroll bar, keyboard arrows or the mouse wheel.

Click either the binary area or the text area to focus on it. You can also use the
Tab button to switch the cursor between hexadecimal and text modes.

Disk Hex Editor Options

There are several options available in Disk Hex Editor. To access these
options, click the Options icon in the task bar at the top of the pane. The options
are described below:

Show Data Inspector Display or hide the Data Inspector window. When the
check box is selected, the Data Inspector appears as a separate window. For
more information, see Data Inspector, below.

Explorer Tool Views 11
Hexadecimal Offset Switch the display of the current address offset
between hexadecimal and decimal format. When the check box is selected,
offset appears in hexadecimal format.

Allow Edit Content Select this check box to allow editing mode in the editor.
By default, this option is unchecked and you can only review the content.

Data Inspector

The Data Inspector displays whatever is currently under the cursor. It does so
in ten different formats. This may help you interpret data as displayed in Disk
Hex Editor.

The Data inspector window disappears when you click on another area in the
explorer, and appears again when you return to the Disk Hex Editor.

File Cluster Chain

To help navigate through the content of open files, file cluster information is
displayed at the left side of the editor under the object description. You can
select any cluster in this list jump immediately to that cluster or simply scroll
through the list to view selected cluster content.

Drag’n’Drop
Recovery

Use this view to organize the list of files and folders you want to recover. Select
files or folders in the file pane and drag them to the Drag’n’Drop Recovery
pane.

Figure 2-6 Drag’n’Drop Recovery

Files appear here as a list of potential items waiting for UNDELETE recovery.
Various aspects of each file is displayed. Along with the name, size and dates
of each item, you will be able to view the recovery status or potential for
recovery of each item.

After you have finished dragging files and folders to this list, select the check
box for each file or folder you wish to recover. You can recover all files at the
same time, or recover a few at a time. To select files for recovery perform any
of the following actions:

• Click the Select All icon at the top of the pane.

12 CHAPTER 2: ACTIVE@ UNDELETE EXPLORER
• Select the check box on the left side of each item individually.

• Select a group of items using [Shift] and mouse click or [Ctrl] and mouse
click. Press the [Spacebar] key to select or clear check boxes for all
selected items.

When some or all files and folders are selected, click Recover Checked to
initiate the recovery process. After the process starts, the Log View appears
automatically.

If you selected some of the files in this pane and completed recovery for them,
you can repeat the recovery process after selecting different files or folders
remaining in the Drag’n’Drop Recovery view.

Toolbar Commands for Drag’n’Drop Recovery

Table 2-3 Commands for Drag’n’Drop Recovery

Icon Command Description

Check All Select or clear check boxes for all items in the list

Recover Checked Initiate the recovery process for all selected items in the
list

Clear Clear the list of all contents

Options Dialog Box 13
Options Dialog Box You can change many of the settings that affect the behaviour of this
application in the Options dialog box. To open the Options dialog box, click
View > Options.

The table below describes the options:

Table 2-4 Options

Options Name Description

General Default Path to Save
Recovered Items

This points to the folder where
recovered files and folders will be
saved.

Default Path to Store Disk
Images

This points to the folder where
newly-created Disk Images will be
saved.

Show Scan Modes Dialog This option enables displaying the
Select Advanced Scan option.

Show Wizard Welcome
screens

Allow wizard Welcome screens to
appear during wizard execution.

Write Log on disk Allow application logs to be written in
the program directory

Number of read attempts The system will attempt to read
damaged areas this number of times
during the scan procedures before
moving on.

Application Views Show Application Log Show or hide Application Log view.

Show Property view Show or hide Property view

Show Drag'n'Drop
Recovery view

Show or hide Drag'n'Drop Recovery
view

Show Search view Show or hide Search view

Show HEX Editor View Show or hide Disk HEX Editor view

Remote Connections Listening Port Number Port number, reserved for TCP
connection between Active@ Remote
Recovery Agent and Active@
UNDELETE.

RPC Port Number Port number, reserved for call backs
between Active@ Remote Recovery
Agent and Active@ UNDELETE.

14 CHAPTER 2: ACTIVE@ UNDELETE EXPLORER
Symbols and Icons
Used in the
Explorer

The table below describes the symbols that are used in Active@ UNDELETE
Explorer trees and file lists.

Table 2-5 Symbols and Icons

Icon Name Description

Root Node Represents a local or remote computer

Floppy Drive

Logical Drive Represents a logical drive on one of the
detected hard drives.

CD-ROM Drive

Network Drive Represents a shared network resource

Folder Regular file system folder

Service Folder This folder contains additional drive scanning
results, such as orphan files and folders

Deleted Folder This folder was detected as deleted and
available for recovery.

Destroyed Folder This folder was detected as completely
destroyed - data from this folder is impossible
to recover

File A common file of any type

System File

Temporary Saved
Encrypted File

Disk Image Configuration
File

Previously created and ready for use

Deleted File This file was detected as deleted and
available for recovery

Symbols and Icons Used in the Explorer 15
A deleted file or folder that appears as a black icon indicates that deleted file or
folder has a poor chance of recovery. This may be because it has been partially
or completely overwritten.

Destroyed File This file was detected as completely
destroyed - data from this file is impossible to
recover

Device Collection The root element of the detected devices tree
on the current computer

Device Represents one of the detected devices on
the current computer

Removable Device Such as a Flash Card or Zip Drive

Unknown Device Unspecified device

Partition Detected partition on corresponding device

Unallocated Space Detected Unallocated space on
corresponding device

Detected Partition Partition detected after device scan

Disk Image Represents an open Disk Image as part of a
File System structure

Icon Name Description

16 CHAPTER 2: ACTIVE@ UNDELETE EXPLORER
Connecting to
Active@ Remote
Recovery Agent

If you are using the Network Edition of Active@ UNDELETE you be able to
connect to Active@ Remote Recovery Agent. This is a utility that provides
recovery features over a network environment.

The computer that you want to connect to must have Active@ Remote
Recovery Agent running with status Enabled. After you establish connection
through the network, then you can scan and browse the file system of the
remote computer.

Active@ Remote Recovery Agent connects to networked PCs in one of the
following ways:

• Select a workstation from a drop-down list of network neighborhood
computer names, located at the top of the explorer Tree Pane.

• Type a computer name or computer IP address into the combo box text field
and press [Enter] to connect.

• Click Browse to Computer located on the right side of the neighborhood
computers drop-down list. A Browse to Computer dialog box opens.

• In the command toolbar, click Actions > Connect... to open the Browse to
Computer dialog box.

If the remote computer has Active@ Remote Recovery Agent protected with a
password, you will be prompted when connection is established. If the
password you enter matches the password defined for Active@ Remote
Recovery Agent the connection will be established.

See Active@ Remote Recovery Agent Options for details.

3
 USING ACTIVE@ UNDELETE
This chapter describes how to perform various functions using Active@
UNDELETE.

Outline of
UNDELETE Steps

To perform the UNDELETE process on a file or folder, you must scan a drive or
folder to discover deleted entries, as listed in the Root Folder (File Allocation
Table) or Master File Table (NT File System).

Once a deleted entry has been found, a chain of file clusters is defined for
recovery and then the contents of these clusters is written to the newly created
file.

Although different file systems maintain their own specific logical data
structures, basically each file system follows these rules:

• A list or catalog of file entries and deleted files is kept. This list can be
scanned for entries marked as deleted.

• For each catalog entry, a list of data cluster addresses is kept. From the
deleted file entry, a set of clusters that make up the file can be located.

• After finding the deleted file entry and assembling the associated set of
clusters, the data from them can be read and copied to another location.

It is important to note, however that not every deleted file can be recovered. To
be successful, it is important to try every method available.

The UNDELETE process is very straight forward. Follow these steps:

1 Scan - Assess the status of all contents.

2 Search - Find files for recovery.

3 Recover - Write deleted or damaged file to a new location.

The remainder of this chapter contains detail about each of these steps.

Scanning Drives
and Devices

The first step in UNDELETING files and folders is to scan the physical devices
or hard drives. A scan is done to establish the status of partitions, drives, files
and folders.

Any accessible local drive displayed in the Active@ UNDELETE Explorer can
be scanned for deleted files or folders.

18 CHAPTER 3: USING ACTIVE@ UNDELETE
Scanning Drives for
Deleted Files or

Folders

To perform a drive scan do the following:

1 Select the Local Drive tree by clicking on Local Drive tab in Active@
UNDELETE Explorer.

2 Select any drive item in the Local Drives tree. If this drive has not been scanned
before, the dialog box Select Drive Scan Mode appears.

Figure 3-1 Select Drive Scan Mode

3 Select one of the local drive scan methods to start scanning.

Alternately, click Cancel to abandon the scan.

If you want to skip this step in the process next time, clear the Show this
dialog next time? check box. The scan method will default to Simple Scan.

• Another way to begin the scan is to click Actions > Scan... in command
toolbar, and select Simple Scan or Advanced Scan.

• A third method is to click Scan in the toolbar. To change the Scan button
default command, use the drop-down arrow on the right side of the button.

• To begin scanning, you may also right-click any drive item. Click Drive
Scan... from the context menu and Simple Scan or Advanced Scan.

4 When the scan process starts, you can view a progress bar in the Status Bar
area that indicates the scanning progress has begun.

In the Application Log view, new entries describe the scanning process events
as they happen.

During the scanning process, the Stop button becomes available and can be
used to terminate the scan process at any time.

5 After the local drive scan completes, you can view the content of scanned drive
in the File Pane of Active@ UNDELETE Explorer.

Scanning Physical
Devices for

Partitions and
Drives.

You need to scan physical devices for missing or damaged partitions and hard
drives. There are two types of devices scanning:

• Advanced Device Scan

Scanning Drives and Devices 19
• Low Level Scan

To scan device using one of these methods, follow these steps:

1 Open the local device tree by clicking the Local Devices folder in Active@
UNDELETE Explorer.

2 Select a physical device that you wish to scan. If this device has not been
scanned before, the dialog box Select Device Scan Mode appears.

Figure 3-2 Select Device Scan Mode

3 Select one of the device scan methods to start scanning.

Alternately, click Cancel to abandon the scan.

If you want to skip this step in the process next time, clear the Show this
dialog next time? check box. The scan method will default to Advanced Scan.

• Another way to begin the scan is to click Actions > Scan... in the command
toolbar, and select Advanced Scan or Low Level Scan.

• A third method is to click Scan in the toolbar. To change the Scan button
default command, use the drop-down arrow on the right side of the button.

• To begin scanning, you may also right-click any drive item. Click Drive
Scan... from the context menu and Advanced Scan or Low Level Scan.

20 CHAPTER 3: USING ACTIVE@ UNDELETE
4 For Advanced Scan, the Advanced Device Scan definition dialog box appears:

Figure 3-3 Advanced Device Scan

A description of the options follows:

• Start at sector / End at sector - If the device you are scanning is large,
scan part of it for a quicker report.

• Scan Options

• Scan for partitions: Specify which type or types of partition (File
System) is about to be scanned. Select Any to detect all types of
partitions.

• Confirm accepting detected partition - With this check box selected,
each time the scan detects a new partition, a confirmation screen
appears.

• Skip detected partition area - With this check box selected, a
newly-detected partition area is not scanned at all. The scanning process
continues at a point after the new partition.

• Scan every sector - Select this check box for the most complete scan of
the device. Every sector is scanned for partition signatures.

If you have chosen a Low Level Scan, a similar dialog box appears. There are
only two options to configure:

• Start at sector / End at sector - If the device you are scanning is large,
scan part of it for a quicker report.

• Confirm accepting detected partition - With this check box selected, each
time the scan detects a new partition, a confirmation screen appears.

After you have configured the scan, click OK to perform scan or click Cancel to
exit without scanning.

5 When the scan process starts, you can view a progress bar in the Status Bar
area that indicates the scanning progress has begun.

Searching for Deleted Files and Folders 21
In the Application Log view, new entries describe the scanning process events
as they happen.

During the scanning process, the Stop button becomes available and can be
used to terminate the scan process at any time.

6 After the device scan completes, you can view the content of scanned device in
the File Pane or in the Tree Pane of Active@ UNDELETE Explorer.

Figure 3-4 Local Device Tree After Scan

(i) Note: When local drive items are found in the Local Device tree, all Active@
UNDELETE features apply (for example, Scan, Search Recovery, etc.), the
same as they apply to drives items in Local Drives Tree.

Searching for
Deleted Files and
Folders

After a scan is complete, search for files and folders using the Search Bar,
located at the top of Explorer's File View.

Figure 3-5 Search Bar

Simple Search To conduct a simple search, follow these steps:

1 In the Look for text field, enter search criteria. This can be a full file or folder
name, a partial name or a search pattern.

2 Click Search in to initiate the search process.

3 Results of the search appear below in the Search Results view.

To change searching options click the Options drop-down menu button in the
Search Bar. The descriptions below will help you to change options:

Recursive search - With this check box selected, search covers the root level
of the drive and all sub folders. This is the default setting. Clear this check box
to search only the root level of the drive.

Case sensitive search - With this check box selected, search results match
the search criteria where file names have both upper case and lower case

22 CHAPTER 3: USING ACTIVE@ UNDELETE
letters. The default setting has the check box cleared and all letters are
recognized, whether entered in upper or lower case.

Search among deleted only - With this check box selected, results of the
search show only those files that are deleted or damaged.

Search among existing only - With this check box selected, results of the
search show only those files that are not deleted.

Search Pattern

Use the same type of search pattern that you use when searching for files or
folders in Windows.

The asterisk symbol (*) in a pattern means that at this place can be zero or
any number of any type of symbol.

The table below illustrates some examples:

Table 3-1 Search Pattern Examples

(i) Note: If conducting a search on a drive or drives that has never been scanned,
the application will scan the drive first before searching.

Advanced Search To use Advanced Search click the Advanced Search menu button at the right
side of the Search Bar.

The Search Options:Advanced Settings dialog box opens:

Figure 3-6 Search Options:Advanced Settings

Pattern Results of Search

* All files on the drive or in the folder
*.txt All files with “txt” extension

my*.* All files starting with “My”

MyFile.txt Only files named “MyFile.txt”

Searching for Deleted Files and Folders 23
Use Advanced Search to specify search criteria and filter the results so that a
smaller number of more appropriate files appears in the Search Results view.
Advanced Search criteria can be set in four groups of options:

• Advanced Settings

• Date Criteria

• Size Criteria

• Attributes

Advanced Settings is the default screen in this dialog box. To select one of the
other groups, click one of them. If any of the group is modified (not default
settings), there will be a green check mark on the left side of the item in the list.
To set group values to default state - double-click on that item.

A search summary appears at the bottom of the dialog box and gives detailed
information about all options selected.

To initiate a search with the options selected, press Search. If any files or
folders can be found with specified search options, they appear in the Search
Results view. If the drive or drives you want to search has not been scanned
before, the application scans the drive before searching.

To leave this dialog box without starting the search process, press Cancel.

Find what Enter text, along with wildcards or expressions that represent
patterns to quickly locate a file.

Use the same type of search pattern that you use when searching for files or
folders in Windows.

The asterisk symbol (*) in a pattern means that at this place can be zero or
any number of any type of symbol.

The table below illustrates some examples:

Table 3-2 Search Pattern Examples

A description of each of the Search Options groups follows:

Advanced Settings

This group provides many standard search options to help you increase the
accuracy of your search. A description of the options follows:

Look in Select the drives or folders to search from a drop-down list of
pre-defined scopes.

Pattern Results of Search

* All files on the drive or in the folder
*.txt All files with “txt” extension

my*.* All files starting with “My”

MyFile.txt Only files named “MyFile.txt”

24 CHAPTER 3: USING ACTIVE@ UNDELETE
File Type This list contains file extensions and icons for the applications
associated with them. If no extensions are listed, all files in the directories listed
in the Look in drop-down list are searched.

Recursive Search in subdirectories Search includes root directory and all
subfolders. Clear this check box to search only the root directory of the drive.

Case Sensitive Search Search reports only files or folders that match the
combination of uppercase and lowercase characters in the Find what box.

Search Among Deleted Only The search is performed for deleted files and
folders only. All existing files are ignored.

Search Among Existing Only The search will be applied only to existing
files and only and all deleted files are ignored.

Use Date Criteria

The figure below shows how the dialog box appears:

Figure 3-7 Search Options:Use Date Criteria

A description of the options follows:

Date type Select from Deleted Date, Created Date or Modified Date in the
drop-down list.

Choose from the following radio buttons:

Any Date Criteria is ignored.

Today Date range is from 24 hours ago, up to this moment.

Last 7 days Date range is from seven days ago, up to this moment.

Last 30 days Date range is from 30 days ago, up to this moment.

Last 12 months Date range is from one year ago, up to this moment.

Searching for Deleted Files and Folders 25
From / To Select a custom date range by using the date picking controls.

Use Size Criteria

The figure below shows how the dialog box appears:

Figure 3-8 Select Options: Use Size Criteria

The options for this dialog box appear below:

Any Size Criteria is ignored.

Small (Less than 100KB) Search reports on files ranging from zero to 99Kb.

Medium (Less than 1MB) Search reports on files ranging from zero to
999Kb.

Large (More than 1 Mb) Search reports on files ranging from 1Mb to
unlimited size.

Specify size, Kb Use fields to specify file size boundaries and narrow your
search.

26 CHAPTER 3: USING ACTIVE@ UNDELETE
Use Attributes Criteria

The figure below shows the Use Attributes Criteria group:

Figure 3-9 Search Options: Use Attributes

The options are described below:

Any Attribute Attribute settings are ignored.

Selected Attributes only If you know the attributes of the file you are
searching for, select check boxes here. Search is conducted on only those files
with selected attributes.

Recovering Files and Folders 27
Recovering Files
and Folders

After scanning and searching for files and folders, start the recovery process
one of the following ways:

• The the icon toolbar, click Recover

• Right-click the file or folder. From the context menu, click Recover

• Select Actions in the command toolbar. Select Recover from the
drop-down menu.

The recovery procedure begins with a confirmation dialog, where recovery
options can be specified.

Figure 3-10 Files and Folders Recovery

A description of the options follows:

Destination Path Specify the target location where recovered file(s) or
folder(s) will be written. This path will be remembered as a default path for use
during the next UNDELETE session. The default path can be changed in the
Options dialog box.

If you cannot enter the target location path in this field, you may browse to the
destination. Click the browse button to the right of the path field.

Recovery options

Silent Directory creation With this option selected, directories and
subdirectories are created with no confirmation dialog.

Replace invalid file name characters. With this option on, you will be able
to edit file names that contain invalid characters during the recovery process.
Examples of invalid characters are:

\ / : * " < > |

Allow recovering to the same drive (containing original data) With this
option selected, you may write recovered files on the same drive as the source
data.

28 CHAPTER 3: USING ACTIVE@ UNDELETE
(!) We strongly recommend that you DO NOT USE this options unless absolutely
necessary.

Recovering
Encrypted Files

Active@ UNDELETE allows you to recover encrypted files in the same way as
any other files. To successfully recover encrypted files, there are few
prerequisites:

• You must have administration rights on the machine, or at least have owner
rights on file you going to recover;

• The target destination folder (where the recovered file will be written) should
be located on an NTFS drive.

If, for some reason you cannot use an NTFS drive, you can save the
recovered file temporarily on a FAT drive and complete the recovery
procedure later using a special utility named Recover encrypted files
using FAT, as described below.

Recover encrypted files using FAT

In most cases, you can recover encrypted NTFS files the same way as other
files on any NTFS partitioned drive.

In some scenarios, however, you must write recovered encrypted files only on
FAT partitions. In this case, encrypted files remain unreadable and the
recovered file is written to a FAT partition is temporary with an ".efs" extension.

To complete the recovery procedure, you must write this temporary file to any
NTFS partition using the Restore Encrypted File dialog box.

Figure 3-11 Restore Encrypted File

Here, you point to the temporary stored encrypted file and indicate the
destination file name and location where the restored encrypted file will be
written.

Click OK to complete the process.

Other Active@ UNDELETE Tools 29
Other Active@
UNDELETE Tools

This section describes some other tools and utilities that are complimentary to
Active@ UNDELETE. They are listed below:

• File Preview

• Save Hardware Diagnostic File

• Disk Image Creator

• Virtual Drive Creator

• Virtual Disk Arrays (RAID)

• Active@ UNDELETE Wizards

File Preview File Preview lets you view the file contents before recovery. To preview a file,
do the following:

1 With a file selected in Active@ UNDELETE Explorer, open the viewer with one
of the following methods:

• In the command toolbar, click View > File.

• Right-click the file. Click File Preview in the context menu.

• Click File Preview in the toolbar.

2 The file contents appear in a separate window.

To see the contents of another file, repeat steps 1 and 2.

Save Hardware
Diagnostic File

This utility helps you store information about local data storage devices in a
single file. This data is saved in “human readable format” and can help analyze
the computer configuration for defects or to point out disk failures.

Below is an example of a Hardware Diagnostic File:

Active@ UNDELETE
Kernel version 03.10.24
File created 27.10.2003 01:59
Platform: WinNT

Device: 00h
 Media Type = Floppy Disk
 Serial Number = not detected
 Physical Geometry:
 Mode LBA = On
 Cylinders = 80
 Tracks Per Cylinder = 2
 Sectors Per Track = 18
 Total Sectors = 2880
 Bytes Per Sector = 512
 Size = 1.40Mb
 Has MBR = No
 Partitions:
 Primary = 1
 0) Active = Yes
 Offset = 0
 Total Sectors = 2880

30 CHAPTER 3: USING ACTIVE@ UNDELETE
 Size = 1.40Mb
 File System = FAT12
 Drive = "A"
 0000-0000: EB3C 90 4D 53 44 4F 53 35 2E 30 00 02 01 01 00 ?<?MSDOS5.0.....
 0000-0010: 02 E0 00 40 0B F0 09 00 12 00 02 00 00 00 00 00 .?.@.?..........
 0000-0020: 00 00 00 00 00 00 29 4A 1F 5B 24 4E 4F 20 4E 41)J.[$NO NA
 0000-0030: 4D 45 20 20 20 20 46 41 54 31 32 20 20 20 33 C9 ME FAT12 3?
 0000-0040: 8E D1 BCF0 7B 8E D9 B8 00 20 8E C0 FC BD00 7C ????{???. ????.|
 0000-0050: 38 4E 24 7D 24 8B C1 99 E8 3C 01 72 1C 83 EB3A 8N$}$‹?™?<.r.??:
 0000-0060: 66 A1 1C 7C 26 66 3B 07 26 8A 57 FC 75 06 80 CA f?.|&f;.&?W?u.??
 0000-0070: 02 88 56 02 80 C3 10 73 EB33 C9 8A 46 10 98 F7 .€V.??.s?3??F.??

 ...

To create a Hardware Diagnostic File, in the command toolbar, click Actions >
Save PC Info...

Disk Images A Disk Image is a mirror of your logical drive or physical device that is stored in
one large file. A Disk Image file can be useful when you want to back up the
contents of the whole drive, and restore it or work with it later.

Before you start recovering deleted files, it may be a good idea to create a Disk
Image for the entire drive, if you have enough space on another drive. The
reason for doing this is for insurance. If you do something wrong while
recovering the files (for example, recovering files onto the same drive they
came from), you will be able to recover these deleted files and folders from the
Disk Image that you have wisely created.

Active@ UNDELETE provides extensive functionality to recover files from a
Disk Image. You can create an image of a logical drive, a device or a partition.
Save the disk image as one large file or split the image into chunks the size you
prefer for later use.

When creating a Disk Image, it stores in at least two files: one is the
Configuration file and the second is the actual image body file. If you decide to
save a disk image split into chunks then the image body files can be as many in
number as is required to save all the data.

In the example below, we create a hard drive Disk Image sized 7.84 Gb with
options to split it into 1Gb chunks. Below is the list of files created:

 MyImage.dim - Local Drive Image configuration file

 MyImage.000 1,441 Kb- First chunk of image body

 MyImage.001 1,441 Kb- Second chunk of image body

 MyImage.002 1,071 Kb- Last chunk of image body

Other Active@ UNDELETE Tools 31
Creating Disk Images

Follow these steps to create a Disk Image:

1 From the Active@ UNDELETE Explorer, select the drive, device or partition for
which you want to create an image.

2 Start the Create Disk Image wizard by doing one of the following:

• On the toolbar, click Create Disk Image

• In the command toolbar, click Tools > Create Disk Image

• Right-click the selected drive and click Create Disk Image in the context
menu

3 Follow the instructions of the wizard as they appear.

(i) Note: Configuration file for Disk Images has .DIM extension by default.

(!) Important: The Target Location for the Disk Images must always be on a drive
other than the drive for which you are creating the image.

(!) Important: File systems FAT16 and FAT32 do not support file sizes larger than
2Gb and 4Gb respectively. In these file systems is not possible to create a disk
image file for a drive as it is likely to grow larger than the acceptable limit. The
solution in this case is to use a target location formatted under the operating
system Windows NT/2000/XP or NTFS or create a Disk Image that is split into
chunks of an appropriate size.

Opening Disk Images

To open a previously created Disk Image, follow these steps:

1 In the Active@ UNDELETE Explorer, start the Open Disk Image wizard by
doing one of the following:

• Browse to the location where the previously-created Disk Image was saved.
Locate and double-click on the Disk Image configuration file (extension
.DIM).

(i) Note: The Disk Image configuration file is highlighted in Active@ UNDELETE
Explorer using the icon shown here:

• On the toolbar, click Open Disk Image

• In the command toolbar, click Tools > Open Disk Image

2 Follow instructions of the wizard to open the Disk Image.

3 If the Disk Image opens successfully, it will appear as a Disk Image node in
either the Local Drives or the Local Devices tree and will be ready for all tasks
applicable for UNDELETING.

32 CHAPTER 3: USING ACTIVE@ UNDELETE
Virtual Drives Using Active@ UDELETE you can manipulate the configuration of available
Local Drives (or partitions) as a flexible tool to recover inaccessible data.

Creating Virtual Drive Info

You can create a Virtual Drive (or a software drive access point) that will
emulate the functions of a real Local Drive (or partition) to gain access to data
on your hard drive.

To create a Virtual Drive, select the desired device in which you what to create
the Virtual Drive and then do one of the following:

• In the command menu, click Edit > Add Virtual Drive...

• Right-click the device item. Click Add Virtual Drive... from the context
menu.

The Create New Virtual Drive Info dialog box appears:

Figure 3-12 Create New Virtual Drive Info

Use the descriptions below to help you configure the Virtual Drive:

File system: Select a file system from the drop-down list.

First sector: Enter the number of the first sector of the Virtual Drive.

Total sectors: This is the number of sectors that will be in the newly-created
Virtual Drive.

When configuration is complete, click OK to create the Virtual Drive or Cancel
to exit the dialog box.

If creation is successful, the new Virtual Drive appears under the selected
device and can be scanned for files and folders, the same as a normal Local
Drive.

You can also modify the properties of this Virtual Drive or even delete it from
device tree.

Other Active@ UNDELETE Tools 33
Modifying the Properties of an Existing Drive

Sometimes a local drive’s properties become corrupted. As a result, all data on
this drive becomes inaccessible even if the drive is recognized by operating
system. To recover data from this drive, you can adjust the drive’s properties by
taking following steps:

1 Create virtual copy of the drive.

All manipulation of drive properties applies to the copy of the drive to ensure
that none of real drive’s properties are altered. Follow these steps to make a
copy of a drive:

a Select desired drive in the Explorer tree.

b Run Clone Drive Info by doing one of the following:

• In the command toolbar, click Edit > Clone Drive Info

• Right-click the drive item. Click Clone Drive Info from the context menu.

c After these commands, the cloned (copied) drive appears under the
appropriate device in explorer tree with the icon pictured here:

2 Modify drive properties

For a virtual drive you can alter its properties by doing one of the following:

• In the command toolbar, click Edit > Modify Drive Info...

• Right-click the virtual drive item. Click Modify Drive Info... from the context
menu.

The Modify Drive Info dialog box appears:

Figure 3-13 Modify Drive Info

You can modify drives properties in as many combinations and as many times
as you want while in this virtual drive.

Saving Device’s Drive Info

After scanning a device for deleted or damaged partitions, or after manually
editing a device's existing Local Drives, all device drive information can be
stored into the file and loaded back at any time.

34 CHAPTER 3: USING ACTIVE@ UNDELETE
To save a device’s drive info, you have to select the desired device and do one
of the following:

• In the command toolbar, click Edit > Save Drive Info...

• Right-click a device with virtual or detected drive items. Click Save Drive
Info... from the context menu.

Later, you can open a previously-saved device drive information file. To do so,
select the desired device and do one of the following:

• In the command toolbar, click Edit > Load Drive Info

• Right-click the device item. Click Load Drive Info... from the context menu.

Virtual Disk Arrays There are many reasons for a RAID system to fail (RAID controller failures,
software RAID emulator errors, etc.). Active@ UNDELETE provides an easy
way to manage array disks together and make damaged or deleted data
accessible.

You can combine together a disk that was previously used as a part of a RAID
system in a temporal (virtual) Disk Array. With this configuration, you are able to
do all drive UNDELETE manipulations like it is regular drive.

The Virtual Disk Array Wizard will guide you through the process of assembling
together the parts of the array. To start this wizard, do one of the following:

• In the command toolbar, click Tools > Virtual Disk Arrays...

• In the toolbar, click RAID

Follow the steps as presented by the wizard to complete the Disk Array
creation.

4
 ACTIVE@ UNDELETE
WIZARDS
For better guidance in most complex or routine tasks, Active@ UNDELETE
presents several wizards for creating and opening a disk image, or creating a
virtual disk array.

Virtual Disk Array
Wizard

The Virtual Disk Array Wizard guides you through the process of assembling
together the parts of a disk array in order to recover damaged or deleted files or
folders.

To start this wizard do one of the following:

• On the toolbar, click RAID

• In the command toolbar, click Tools > Virtual Disk Arrays...

Follow the wizard steps as prompted to complete Disk Array creation.

1 Select Disk Array Type

Figure 4-1 Select Virtual Disk Array Type

On this screen, click a radio button to select one of the disk array types. A
description of each type appears as you select it.

After selecting appropriate type of array, click Next > to continue.

36 CHAPTER 4: ACTIVE@ UNDELETE WIZARDS
2 Compose Disk Array from available disks

Figure 4-2 Select Disks

In this screen, select the local disks that will be a part of the disk array and put
them in sequence.

To add one of the available disks as part of the disk array, do one of the
following:

• Select one of the disks in the All available disks list. Click Add. The disk
moves to the Selected disks list.

• Double-click one of the disks in the All available disks list and it moves to
the Selected disks list.

To remove any of the selected disks:

• Select one of the disks in the Selected disks list. Click Remove. The disk
moves back to the All available disks list.

• Double-click one of the disks in the Selected disks list and it moves back to
the All available disks list.

To clear the Selected disks list, click Remove All.

To change the order of drives in the Selected disks list, select one of the disks
and click Up or Down. The selected disk moves in the direction indicated.

When all disks have been selected and sequenced, click Next > to continue.

Virtual Disk Array Wizard 37
3 Set Disk Array Geometry

Figure 4-3 Disk Array Geometry

On this screen, you can specify the final Disk Array geometry settings.

To use default values select Use default settings.

To set specific values, select Specify custom settings. Enter values for disk
geometry in the appropriate fields.

When disk geometry settings are complete, click Next > to continue.

4 Confirm Virtual Disk Array Creation

Figure 4-4 Create Disk Array

On this screen, verify the configuration information about the Disk Array to be
created.

Click < Back to change settings if they are not correct.

Click Next > to create the Virtual Disk Array.

38 CHAPTER 4: ACTIVE@ UNDELETE WIZARDS
If the new Disk Array was successfully created, you will see a new image under
the devices or drives folders in the Explorer Tree View.

Create Disk Image
Wizard

This wizard helps you create a Local Disk Image (default file extension is *.hard
drive) or a Physical Device Image (default file extension is *.DIM).

To start this wizard, select either a Local Drive or a Local Device for which you
wish to create a Disk Image. Run the wizard by doing one of the following:

• On the toolbar, click Create Disk Image

• In the command toolbar, click Tools > Create Disk Image

• Right-click the selected drive, and click Create Disk Image on the context
menu

After the wizard starts, follow the simple instuctions on each of the subsequent
screens:

1 Set Disk Image Options

Figure 4-5 Create Disk Image Options

Use the descriptions below to help with configuration in this dialog box:

Disk Image file name: Specify the file name and path to the folder under which
the newly created image will be stored.

(!) Important: The target location for the Disk Image file must always be on a drive
other than that of the source. You are creating an image of a disk. You cannot
write onto the same disk, or you will be changing the source.

(!) Important: File systems FAT16 and FAT32 do not support file sizes larger than
2GB and 4GB respectively. In these file systems is not possible to create a disk
image file for a drive as it is likely to grow larger than the file size limit. The

Create Disk Image Wizard 39
solution in this case is to use a target location formatted under the operating
system Windows NT/2000/XP or NTFS or to create a Disk Image split into
chunks of an appropriate size.

Use compression for Disk Image creation: With this option selected, the final
Disk Image created is compressed. Compression saves some space on your
hard drive, but makes your Disk Image less useful for data recovery operations.

Specify chunk size: If this check box is cleared, the Disk Image file is created
as one file. It is possible this file will be as big as the original disk. Select this
check box and specify a size so that the Disk Image file is stored in chunks.

After setting are complete for this page, press Next > to proceed.

2 Select Area of a Disk

Figure 4-6 Disk Image Area Selection

You can make a Disk Image of an entire disk or part of a disk. On this wizard
page, specify the area size in one of two ways:

• In the picker control area, click and drag the edges of the selected area until
the desired area is covered

• Enter the Start at sector and End at sector numbers of the desired area

After completing this page, press Next > to proceed.

40 CHAPTER 4: ACTIVE@ UNDELETE WIZARDS
3 Confirm Disk Image Creation

Figure 4-7 Creation of Disk Image

On this screen, verify the configuration information about the Disk Image to be
created.

Click < Back to change settings if they are not correct.

Click Next > to create the Disk Image.

You can watch the progress as the Disk Image is created. You can cancel the
process any time by clicking Cancel.

Open Disk Image
Wizard

Using this wizard you can open a previously-created Disk Image. Follow the
steps:

1 Enter Disk Image Configuration File

Figure 4-8 Disk Image Configuration File

Open Disk Image Wizard 41
In this step, enter the name of the Disk Image configuration file to be opened.

You can skip this step by clicking Next >. This will ignore the configuration file
information and allow you to compose the disk image manualy in the Step 2
screen.

Click the Browse button (...) to open the Browse for File dialog box.

If using a configuration file, after it has been identified, click Next > to continue.

2 Set Disk Image Files

Figure 4-9 Disk Image Chunks Composer

On this screen, you can compose a disk image by specifying Disk Image
chunks and type of the image.

Use the descriptions below to help with the settings:

Disk Image Label: Alter the name of the label under which opened Disk Image
will appear in Explorer.

Disk Image Type: Specify whether the Disk Image file refers to a logical drive
or a physical device. This is set automatically by the List of Disk Image
Chunks, described below. You may select one or the other manually.

List of Disk Image Chunks: If you are opening a Disk Image using a Disk
Image configuration file, you will see the list of image body chunks and the type
of disk image you opening (Local Drive or Physical Device). If the type is not set
correctly, specify manually the disk image chunks and type.

To add a Disk Image chunk, click Add >> and select a disk image chunk file
from the browsing dialog box.

You can remove any disk image chunk by selecting it in the list and then clicking
Remove.

42 CHAPTER 4: ACTIVE@ UNDELETE WIZARDS
You can modify the order of disk image chunks. Select one of the disk image
chunks in the list and click Move Up or Move Down until the disk image chunk
is in the correct position.

When all inputs are complete on this page, click Next > to continue.

3 Set Disk Image Geometry

Figure 4-10 Disk Image Geometry

On this screen, specify the geometry of the Disk Image you are opening.

(!) Important: Disk Image geometry settings only apply to Physical Device disk
images.

To use default values select Use default settings. To set custom values, select
Specify custom settings and enter disk geometry values in the appropriate
fields.

When all geometry settings are complete, click Next > to continue.

4 Confirm Disk Image Settings

On this screen, verify information about the Disk Image you are opening.

Click < Back to change settings if they are not correct.

Click Next > to open the Disk Image.

If Disk Image opens, the next screen contains a Complete message. The
opened Disk Image appears as Local Drive or Local Device, depending on the
type of Disk Image, in the appropriate folder of the Active@ UNDELETE
Explorer Tree.

5
 ACTIVE@ UNDELETE
NETWORK EDITION
Active@ UNDELETE Network Edition is an application that allows remote
access to a computer to:

• Scan drives and devices

• Search for Files and Folders

• Preview deleted Files

• Recover deleted Files and Folders on remote machine and much more...

The remote computer must be running the client application, Active@ Remote
Recovery Agent for the host computer to get access to its file structure. After
establishing the connection, you can navigate through drives and folders of the
remote computer in the same way that it works for a local computer.

Active@ Remote
Recovery Agent.
Overview

Active@ Remote Recovery Agent provides a unique ability to let the Active@
UNDELETE application remotely scan, search, recover and perform other
operations.

Figure 5-1 Remote Recovery Agent

Active@ Remote Recovery Agent is simple to use. Run it as an application.
You can keep the window open or minimize it. If running it minimized, you can
access the application at any time through an icon in the System Tray area.

44 CHAPTER 5: ACTIVE@ UNDELETE NETWORK EDITION
Using Active@
Remote Recovery

Agent

To start the application from the Windows, click the Start button, click All
Programs > LSoft Tech > Remote Recovery Agent.

The Remote Recovery Agent Log View window appears:

Figure 5-2 Log View

In this Log View screen, transaction information is shown, along with a brief
description of each activity.

The Active@ Remote Recovery Agent window can be minimized to a small icon
in the System Tray as shown in the figure below:

Figure 5-3 Remote Recovery Agent Icon

Active@ Remote Recovery Agent. Overview 45
This icon changes, according to different activity states of the application.
Usually the icon flashes when the status changes.

Table 5-1 System Tray Icon Activity States

For a local computer to allow Active@ UNDELETE to access and process
remote data recovery functions, set Active@ Recovery Agent to Enable. This
can be done in one of the following ways:

• In the command toolbar, click File > Enable.

• Right-click Remote Recovery Agent in the System Tray. Click Enable from
the context menu.

The figure below shows the Remote Recovery Agent context menu, where you
can choose to restore the Properties window, Enable or Disable access, or
Exit the application.

Figure 5-4 Remote Recovery Agent Context Menu

Icon Activity Description

Disabled Remote Recovery cannot receive or respond to any request from
Active@ UNDELETE Client.

Enabled Remote Recovery ready to receive and respond to any request
from Active@ UNDELETE Client.

Connected Currently online with Recovery Toolkit Client and processing
scanning, recovery and other commands from the client.

Processing This icon indicates that Active@ Remote Recovery Agent is
processing requests from Active@ UNDELETE Client.

46 CHAPTER 5: ACTIVE@ UNDELETE NETWORK EDITION
Active@ Remote
Recovery Agent

Options

The Active@ Remote Recovery Agent Properties dialog allows you to specify
following settings:

Port Number: The number of the communication port reserved for the TCP
connection between Active@ Remote Recovery Agent and Active@
UNDELETE. After applying changes, Active@ Remote Recovery Agent is
restarted immediately.

Enable Active@ Remote Recovery Agent at Start: With this check box
selected, Active@ Remote Recovery Agent allows connection with Active@
UNDELETE as soon as the PC starts.

Use password for connection validation: With this check box selected, the
connection request from the client is password protected and validated against
the matching password entered in Active@ Remote Recovery Agent.

6
 UNDERSTANDING ADVANCED
UNDELETE PROCESS
This chapter describes various processes of the application.

Overview The process to undelete a file consists of scanning a drive or folder to discover
deleted entries, as listed in the Root Folder (File Allocation Table) or Master
File Table (NT File System). Once a deleted entry has been found, a chain of
file clusters is defined for recovery and then the contents of these clusters is
written to the newly created file.

Different file systems maintain their own specific logical data structures,
however basically each file system follows these rules:

• A list or catalog of file entries and deleted files is kept. This list can be
scanned for entries marked as deleted.

• For each catalog entry, a list of data cluster addresses is kept. From the
deleted file entry, a set of clusters composing the file can be located.

After finding the deleted file entry and assembling the associated set of
clusters, the data from them can be read and copied to another location.

It is important to note, however that not every deleted file can be recovered. To
be successful, it is important to try every method available. In order to try every
method, sometimes it is necessary to push ahead, even though going on
assumed information, such as:

• In order to begin, assume that the file entry still exists (that is has not been
overwritten with other data). The sooner a recovery or undelete attempt is
made, the better. This reduces the chance that new files have written on top
of the deleted data, and improves the chance that the file can be recovered.

• The second assumption is that the file entry in the Table is reliable enough
to point to the location of the file clusters. In some cases (specifically in
Windows XP, and on larger FAT32 volumes) the operating system damages
the Table file entries immediately after a file is deleted. The important first
data cluster becomes invalid and further restoration might not be possible.

• The third assumption is that the file data clusters are intact (they have not
been overwritten with other data). The fewer write operations that have been
performed on the drive where deleted file used to reside, the more chances
that the space occupied by data clusters of the deleted file have not been
used for other data storage.

48 CHAPTER 6: UNDERSTANDING ADVANCED UNDELETE PROCESS
In general, here’s what to do immediately after data loss:

1 PROTECT THE DRIVE LOCATION WHERE YOU HAVE ACCIDENTALLY
DELETED FILES. Any program that writes data to the disk, even the installation
of data recovery software can spoil your sensitive data.

2 DO NOT SAVE DATA ONTO THE SAME DRIVE THAT YOU FOUND ERASED
DATA, WHICH YOU ARE TRYING TO RECOVER! While saving recovered
data onto the same drive where sensitive data was located, you can spoil the
process of recovering by overwriting table records for this and other deleted
entries. It is better to save data onto another logical, removable, network or
floppy drive.

The rest of this chapter contains step-by-step examples on these topics:

Disk Scanning

Defining the Chain of Clusters

Recovering the Chain of Clusters

Overview 49
Disk Scanning Disk Scanning is the process of low-level assessment of all entries in the Root
Folders on FAT12, FAT16, FAT32 or in Master File Table (MFT) on NTFS,
NTFS5.

The objective is to find and display deleted entries. In spite of different file and
folder entry structure in the different file systems, both of them have common
file attributes, as listed in the table below:

Table 6-1 Common File Attributes

Given that a any file table, folder or file has a location, size and predefined
structure, it is possible to scan data on the drive from the beginning to the end,
reading the actual data, not only the record kept in the file table. That
information can be displayed and assessed.

NOTE Deleted entries are marked differently depending on the file system. For
example, in FAT any deleted entry, file or folder is marked with the ASCII
symbol 229 (OxE5) as the first symbol of the entry file name. On NTFS a
deleted entry has a special attribute in the file header that points to whether the
file has been deleted or not.

Scanning a FAT16 Folder

In this example, the folder contains 3 entries, one of which is deleted.

1 The first entry is an existing folder called MyFolder. (long entry and short entry)

0003EE20 41 4D 00 79 00 46 00 6F 00 6C 00 0F 00 09 64 00 AM.y.F.o.l....d.
0003EE30 65 00 72 00 00 00 FF FF FF FF 00 00 FF FF FF FF e.r...yyyy..yyyy
0003EE40 4D 59 46 4F 4C 44 45 52 20 20 20 10 00 4A C4 93 MYFOLDER ..JA”
0003EE50 56 2B 56 2B 00 00 C5 93 56 2B 02 00 00 00 00 00 V+V+..A”V+......

2 The second entry is a deleted file called MyFile.txt (long entry and short entry)

0003EE60 E5 4D 00 79 00 46 00 69 00 6C 00 0F 00 BA65 00 aM.y.F.i.l...?e.
0003EE70 2E 00 74 00 78 00 74 00 00 00 00 00 FF FF FF FF ..t.x.t.....yyyy
0003EE80 E5 59 46 49 4C 45 20 20 54 58 54 20 00 C3 D6 93 aYFILE TXT .AO”
0003EE90 56 2B 56 2B 00 00 EE 93 56 2B 03 00 33 B7 01 00 V+V+..i”V+..3..

3 The third one is an existing file called Setuplog.txt. (only short entry)

0003EEA0 53 45 54 55 50 4C 4F 47 54 58 54 20 18 8C F7 93 SETUPLOGTXT .??”
0003EEB0 56 2B 56 2B 00 00 03 14 47 2B 07 00 8D 33 03 00 V+V+....G+..?3..
0003EEC0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FAT12, FAT16, FAT32 NTFS, NTFS5

Root File Allocation Table Master File Table

Table Location Table Location

File Size File Size

Table Structure Table Structure

File Name File Name

Date/Time Created Date/Time Created

Attributes Attributes

Existing/Deleted Status Existing/Deleted Status

50 CHAPTER 6: UNDERSTANDING ADVANCED UNDELETE PROCESS
0003EED0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The first symbol of the deleted file entry (MyFile.txt) is marked with E5 symbol,
so Disk Scanner can assume that this entry has been deleted.

Scanning an NTFS5 Folder (Windows 2000):

For our drive we have input parameters:

• Total Sectors 610406

• Cluster size 512 bytes

• One Sector per Cluster

• MFT starts from offset 0x4000, non-fragmented

• MFT record size 1024 bytes

• MFT Size 1968 records

From this information, we can read through all 1968 MFT records, starting from
the absolute offset 0x4000 on the volume, looking for the deleted entries. We
are most interested in MFT entry 57 having offset 0x4000 + 57 * 1024 = 74752
= 0x12400 because it contains our recently deleted file “My Presentation.ppt”

Below MFT record number 57 is displayed:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00012400 46 49 4C 45 2A 00 03 00 9C 74 21 03 00 00 00 00 FILE*...?t!.....
00012410 47 00 02 00 30 00 00 00 D8 01 00 00 00 04 00 00 G...0...O.......
00012420 00 00 00 00 00 00 00 00 05 00 03 00 00 00 00 00
00012430 10 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00`...........
00012440 48 00 00 00 18 00 00 00 20 53 DDA318 F1 C1 01 H....... SY?.nA.
00012450 00 30 2B D8 48 E9 C0 01 C0 BF 20 A0 18 F1 C1 01 .0+OHeA.A? .nA.
00012460 20 53 DDA318 F1 C1 01 20 00 00 00 00 00 00 00 SY?.nA.
00012470 00 00 00 00 00 00 00 00 00 00 00 00 02 01 00 00
00012480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00012490 30 00 00 00 78 00 00 00 00 00 00 00 00 00 03 00 0...x...........
000124A0 5A 00 00 00 18 00 01 00 05 00 00 00 00 00 05 00 Z...............
000124B0 20 53 DDA318 F1 C1 01 20 53 DDA318 F1 C1 01 SY?.nA. SY?.nA.
000124C0 20 53 DDA318 F1 C1 01 20 53 DDA318 F1 C1 01 SY?.nA. SY?.nA.
000124D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000124E0 20 00 00 00 00 00 00 00 0C 02 4D 00 59 00 50 00M.Y.P.
000124F0 52 00 45 00 53 00 7E 00 31 00 2E 00 50 00 50 00 R.E.S.~.1...P.P.
00012500 54 00 69 00 6F 00 6E 00 30 00 00 00 80 00 00 00 T.i.o.n.0...^...
00012510 00 00 00 00 00 00 02 00 68 00 00 00 18 00 01 00h.......
00012520 05 00 00 00 00 00 05 00 20 53 DDA318 F1 C1 01 SY?.nA.
00012530 20 53 DDA318 F1 C1 01 20 53 DDA318 F1 C1 01 SY?.nA. SY?.nA.
00012540 20 53 DDA318 F1 C1 01 00 00 00 00 00 00 00 00 SY?.nA.........
00012550 00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00
00012560 13 00 4D 00 79 00 20 00 50 00 72 00 65 00 73 00 ..M.y. .P.r.e.s.
00012570 65 00 6E 00 74 00 61 00 74 00 69 00 6F 00 6E 00 e.n.t.a.t.i.o.n.
00012580 2E 00 70 00 70 00 74 00 80 00 00 00 48 00 00 00 ..p.p.t.^...H...
00012590 01 00 00 00 00 00 04 00 00 00 00 00 00 00 00 00
000125A0 6D 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 m.......@.......
000125B0 00 DC00 00 00 00 00 00 00 DC00 00 00 00 00 00 .U.......U......

Overview 51
000125C0 00 DC00 00 00 00 00 00 31 6E EBC4 04 00 00 00 .U......1neA....
000125D0 FF FF FF FF 82 79 47 11 00 00 00 00 00 00 00 00 yyyy,yG.........
000125E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000125F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00
00012600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

MFT Record has pre-defined structure. It has a set of attributes defining any file
of folder parameters. MFT Record begins with standard File Record Header
(first bold section, offset 0x00):

• “FILE” identifier (4 bytes)

• Offset to update sequence (2 bytes)

• Size of update sequence (2 bytes)

• LogFile Sequence Number (LSN) (8 bytes)

• Sequence Number (2 bytes)

• Reference Count (2 bytes)

• Offset to Update Sequence Array (2 bytes)

• Flags (2 bytes)

• Real size of the FILE record (4 bytes)

• Allocated size of the FILE record (4 bytes)

• File reference to the base FILE record (8 bytes)

• Next Attribute Id (2 bytes)

The most important information in this block is the file state, either deleted or
in-use. If Flags field (in red color) has bit 1 set, it means that file is in-use. In
our example it is zero, which means the file is deleted.

Starting from 0x48, we have Standard Information Attribute (second bold
section):

• File Creation Time (8 bytes)

• File Last Modification Time (8 bytes)

• File Last Modification Time for File Record (8 bytes)

• File Access Time for File Record (8 bytes)

• DOS File Permissions (4 bytes) 0x20 in our case Archive Attribute

Following standard attribute header, we have File Name Attribute belonging to
DOS name space, short file names, (third bold section, offset 0xA8) and again
following standard attribute header, we have File Name Attribute belonging to
Win32 name space, long file names, (third bold section, offset 0x120):

• File Reference to the Parent Directory (8 bytes)

• File Modification Times (32 bytes)

• Allocated Size of the File (8 bytes)

• Real Size of the File (8 bytes)

• Flags (8 bytes)

52 CHAPTER 6: UNDERSTANDING ADVANCED UNDELETE PROCESS
• Length of File Name (1 byte)

• File Name Space (1 byte)

• File Name (Length of File Name * 2 bytes)

In our case from this section we can extract file name, “My Presentation.ppt”,
File Creation and Modification times, and Parent Directory Record number.
Starting from offset 0x188, there is a non-resident Data attribute (green
section).

• Attribute Type (4 bytes) (e.g. 0x80)

• Length including header (4 bytes)

• Non-resident flag (1 byte)

• Name length (1 byte)

• Offset to the Name (2 bytes)

• Flags (2 bytes)

• Attribute Id (2 bytes)

• Starting VCN (8 bytes)

• Last VCN (8 bytes)

• Offset to the Data Runs (2 bytes)

• Compression Unit Size (2 bytes)

• Padding (4 bytes)

• Allocated size of the attribute (8 bytes)

• Real size of the attribute (8 bytes)

• Initialized data size of the stream (8 bytes)

• Data Runs ...

In this section we are interested in Compression Unit size (zero in our case
means non-compressed), Allocated and Real size of attribute that is equal to
our file size (0xDC00 = 56320 bytes), and Data Runs (see the next topic).

Overview 53
Defining the Chain
of Clusters

To reconstruct a file from a set of clusters, we need to define a chain of
clusters. Here are the steps:

1 Scan the drive to locate and identify data.

2 One-by-one, go through each file cluster (NTFS) or each free cluster (FAT) that
we presume belongs to the file

3 Continue chaining the clusters until the size of the cumulative total of clusters
approximately equals the total size of the deleted file. If the file is fragmented,
the chain of clusters will be composed of several extents (NTFS), or select
probable contiguous clusters and bypass occupied clusters that appear to have
random data (FAT).

The location of these clusters can vary depending on file system. For example,
a file deleted in a FAT volume has its first cluster in the Root entry; the other
clusters can be found in the File Allocation Table. In NTFS each file has a
DATA attribute that describes “data runs”. Disassembling data runs reveals
extents. For each extent there is a start cluster offset and a number of
clusters in extent. By enumerating the extents, the file’s cluster chain can be
assembled.

The clusters chain can be assembled manually, using low-level disk editors,
however it is much simpler using a data recovery utility, like Active@
UNERASER.

Defining a Cluster Chain in FAT16

In the previous topic, we were examining a sample set of data with a deleted file
named MyFile.txt. This example will continue with the same theme.

The folder we scanned before contains a record for this file:

0003EE60 E5 4D 00 79 00 46 00 69 00 6C 00 0F 00 BA65 00 aM.y.F.i.l...?e.
0003EE70 2E 00 74 00 78 00 74 00 00 00 00 00 FF FF FF FF ..t.x.t.....yyyy
0003EE80 E5 59 46 49 4C 45 20 20 54 58 54 20 00 C3 D6 93 aYFILE TXT .AO”
0003EE90 56 2B 56 2B 00 00 EE 93 56 2B 03 00 33 B7 01 00 V+V+..i”V+..3..

We can calculate size of the deleted file based on root entry structure. Last four
bytes are 33 B7 01 00 and converting them to decimal value (changing bytes
order), we get 112435 bytes. Previous 2 bytes (03 00) are the number of the
first cluster of the deleted file. Repeating for them the conversion operation, we
get number 03 - this is the start cluster of the file.

What we can see in the File Allocation Table at this moment?

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00000200 F8 FF FF FF FF FF 00 00 00 00 00 00 00 00 08 00 oyyyyy..........
00000210 09 00 A0 00 0B 00 0C 00 0D 00 FF FF 00 00 00 00yy....
00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Zeros! And it is good in our case - it means that these clusters are free, i.e.
most likely our file was not overwritten by another file’s data. Now we have
chain of clusters 3, 4, 5, 6 and we are ready to recover it.

Some explanations:

54 CHAPTER 6: UNDERSTANDING ADVANCED UNDELETE PROCESS
• We started looking from offset 6 because each cluster entry in FAT16 takes
2 bytes, our file starts from 3rd cluster, i.e. 3*2=6.

• We considered 4 clusters because cluster size on our drive is 32 Kb, our file
size is 112, 435 bytes, i.e. 3clusters*32Kb = 96Kb plus a little bit more.

• We assumed that this file was not fragmented, i.e. all clusters were located
consecutively. We need 4 clusters, we found 4 free consecutive clusters, so
this assumption sounds reasonable, although in real life it may be not true.

Note: In many cases data cannot be successfully recovered, because the
cluster chain cannot be defined. This will occur when another file or folder is
written on the same drive as the one where the deleted file is located. Warning
messages about this fact will be displayed while recovering data using Active@
UNDELETE.

Defining a Cluster Chain in NTFS

When recovering in NTFS, a part of DATA attributes called Data Runs provides
the location of file clusters. In most cases, DATA attributes are stored in the
Master File Table (MFT) record. Finding the MFT record for a deleted file will
most likely lead to the location of the cluster’s chain.

In example below the DATA attribute is marked with a green color. Data Runs
inside the DATA attribute are marked as Bold.

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00012580 2E 00 70 00 70 00 74 00 80 00 00 00 48 00 00 00 ..p.p.t._...H...
00012590 01 00 00 00 00 04 00 00 00 00 00 00 00 00 00 00
000125A0 6D 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 m.......@.......
000125B0 00 DC00 00 00 00 00 00 00 DC00 00 00 00 00 00 .U.......U......
000125C0 00 DC00 00 00 00 00 00 31 6E EBC4 04 00 00 00 .U......1neA....
000125D0 FF FF FF FF 82 79 47 11 00 00 00 00 00 00 00 00 yyyy,yG.........

Decrypting Data Runs

Decrypting data runs can be accomplished using the following steps:

1 First byte (0x31) shows how many bytes are allocated for the length of the run
(0x1 in the example case) and for the first cluster offset (0x3 in our case).

2 Take one byte (0x6E) that points to the length of the run.

3 Pick up 3 bytes pointing to the start cluster offset (0xEBC404).

4 Changing bytes order we get first cluster of the file 312555 (equals 0x04C4EB).

5 Starting from this cluster we need to pick up 110 clusters (equals 0x6E).

6 Next byte (0x00) tells us that no more data runs exist.

7 Our file is not fragmented, so we have the only one data run.

8 Lastly, check to see if there is enough information (size of the file). Cluster size
is 512 bytes. There are 110 clusters, 110*512 = 56,320 bytes. Our file size was
defined as 56,320 bytes, so we have enough information now to recover the file
clusters.

Recovering the
Chain of Clusters

After the cluster chain is defined, the final task is to read and save the contents
of the defined clusters to another place, verifying their contents. With a chain of

Overview 55
clusters and standard formulae, it is possible to calculate each cluster offset
from the beginning of the drive. Formulae for calculating cluster offset vary,
depending on file system. Starting from the calculated offset, copy a volume of
data equal to the size of the chain of clusters into a newly-created file.

To calculate the cluster offset in a FAT drive, we need to know:

• Boot sector size

• Number of FAT-supported copies

• Size of one copy of FAT

• Size of main root folder

• Number of sectors per cluster

• Number of bytes per sector

NTFS format defines a linear space and calculating the cluster offset is simply a
matter of multiplying the cluster number by the cluster size.

Recovering Cluster Chain in FAT16

This section continues the examination of the deleted file MyFile.txt from
previous topics. By now we have chain of clusters numbered 3, 4, 5 and 6
identified for recovering. Our cluster consists of 64 sectors, sector size is 512
bytes, so cluster size is: 64*512 = 32,768 bytes = 32 Kb.

The first data sector is 535 (we have 1 boot sector, plus 2 copies of FAT times
251 sectors each, plus root folder 32 sectors, total 534 occupied by system
data sectors).

Clusters 0 and 1 do not exist, so the first data cluster is 2.

Cluster number 3 is next to cluster 2, i.e. it is located 64 sectors behind the first
data sector (535 + 64 = 599).

Equal offset of 306,668 byte from the beginning of the drive (0x4AE00).

With a help of low-level disk editor on the disk we can see our data starting with
offset 0x4AE00, or cluster 3, or sector 599:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
0004AE00 47 55 49 20 6D 6F 64 65 20 53 65 74 75 70 20 68 GUI mode Setup h
0004AE10 61 73 20 73 74 61 72 74 65 64 2E 0D 0A 43 3A 5C as started...C:\
0004AE20 57 49 4E 4E 54 5C 44 72 69 76 65 72 20 43 61 63 WINNT\Driver Cac

Because the cluster chain is consecutive, all we need to do is copy 112,435
bytes starting from this place. If the cluster chain was not consecutive, we
would need to re-calculate the offset for each cluster and copy 3 times the
value of 64*512 = 32768 bytes starting from each cluster offset. The last cluster
copy remainder, 14,131 bytes is calculated as 112,435 bytes - (3 * 32,768
bytes).

Recovering Cluster Chain in NTFS

In our example we just need to pick up 110 clusters starting from the cluster
312555.

56 CHAPTER 6: UNDERSTANDING ADVANCED UNDELETE PROCESS
Cluster size is 512 byte, so the offset of the first cluster would be 512 * 312555
= 160028160 = 0x0989D600

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

0989D600 D0 CF 11 E0 A1 B1 1A E1 00 00 00 00 00 00 00 00 ÐÏ.à¡±.á........
0989D610 00 00 00 00 00 00 00 00 3E 00 03 00 FE FF 09 00>...þÿ..
0989D620 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
0989D630 69 00 00 00 00 00 00 00 00 10 00 00 6B 00 00 00 i...........k...
0989D640 01 00 00 00 FE FF FF FF 00 00 00 00 6A 00 00 00þÿÿÿ....j...
0989D650 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

In the above data, data recovery is complete when data has been read from
this point through 110 clusters (56320 bytes). This data is copied to another
location.

7
 DATA RECOVERY CONCEPTS
This chapter describes some basic concepts that might help when unerasing
data.

Hard Disk Drive
Basics

A hard disk is a sealed unit containing a number of platters in a stack. Hard
disks may be mounted in a horizontal or a vertical position. In this description,
the hard drive is mounted horizontally.

Electromagnetic read/write heads are positioned above and below each platter.
As the platters spin, the drive heads move in toward the center surface and out
toward the edge. In this way, the drive heads can reach the entire surface of
each platter.

Making Tracks On a hard disk, data is stored in thin, concentric bands. A drive head, while in
one position can read or write a circular ring, or band called a track. There can
be more than a thousand tracks on a 3.5-inch hard disk. Sections within each
track are called sectors. A sector is the smallest physical storage unit on a
disk, and is almost always 512 bytes (0.5 kB) in size.

The figure below shows a hard disk with two platters.

Figure 7-1 Parts of a Hard Drive

The structure of older hard drives (i.e. prior to Windows 95) will refer to a
cylinder/ head/ sector notation. A cylinder is formed while all drive heads are
in the same position on the disk. The tracks, stacked on top of each other form
a cylinder. This scheme is slowly being eliminated with modern hard drives. All
new disks use a translation factor to make their actual hardware layout appear

58 CHAPTER 7: DATA RECOVERY CONCEPTS
continuous, as this is the way that operating systems from Windows 95 onward
like to work.

To the operating system of a computer, tracks are logical rather than physical in
structure, and are established when the disk is low-level formatted. Tracks are
numbered, starting at 0 (the outermost edge of the disk), and going up to the
highest numbered track, typically 1,023, (close to the center). Similarly, there
are 1,024 cylinders (numbered from 0 to 1,023) on a hard disk.

The stack of platters rotate at a constant speed. The drive head, while
positioned close to the center of the disk reads from a surface that is passing by
more slowly than the surface at the outer edges of the disk. To compensate for
this physical difference, tracks near the outside of the disk are less-densely
populated with data than the tracks near the center of the disk. The result of the
different data density is that the same amount of data can be read over the
same period of time, from any drive head position.

The disk space is filled with data according to a standard plan. One side of one
platter contains space reserved for hardware track-positioning information and
is not available to the operating system. Thus, a disk assembly containing two
platters has three sides available for data. Track-positioning data is written to
the disk during assembly at the factory. The system disk controller reads this
data to place the drive heads in the correct sector position.

Sectors and Clusters A sector, being the smallest physical storage unit on the disk, is almost always
512 bytes in size because 512 is a power of 2 (2 to the power of 9). The number
2 is used because there are two states in the most basic of computer
languages - on and off.

Each disk sector is labelled using the factory track-positioning data. Sector
identification data is written to the area immediately before the contents of the
sector and identifies the starting address of the sector.

The optimal method of storing a file on a disk is in a contiguous series, that is,
all data in a stream stored end-to-end in a single line. As many files are larger
than 512 bytes, it is up to the file system to allocate sectors to store the file’s
data. For example, if the file size is 800 bytes, two 512 k sectors are allocated
for the file. A cluster is typically the same size as a sector. These two sectors
with 800 bytes of data are called two clusters. They are called clusters because
the space is reserved for the data contents. This process protects the stored
data from being over-written. Later, if data is appended to the file and its size
grows to 1600 bytes, another two clusters are allocated, storing the entire file
within four clusters.

If contiguous clusters are not available (clusters that are adjacent to each other
on the disk), the second two clusters may be written elsewhere on the same
disk or within the same cylinder or on a different cylinder - wherever the file
system finds two sectors available. A file stored in this non-contiguous manner
is considered to be fragmented. Fragmentation can slow down system
performance if the file system must direct the drive heads to several different
addresses to find all the data in the file you want to read. The extra time for the
heads to travel to a number of addresses causes a delay before the entire file is
retrieved.

The FAT File System 59
Cluster size can be changed to optimize file storage. A larger cluster size
reduces the potential for fragmentation, but increases the likelihood that
clusters will have unused space. Using clusters larger than one sector reduces
fragmentation, and reduces the amount of disk space needed to store the
information about the used and unused areas on the disk.

The FAT File
System

The File Allocation Table (FAT) file system is a simple file system originally
designed for small disks and simple folder structures. The FAT file system is
named for its method of organization, the file allocation table, which resides at
the beginning of the volume. To protect the volume, two copies of the table are
kept, in case one becomes damaged. In addition, the file allocation tables and
the root folder must be stored in a fixed location so that the files needed to start
the system can be correctly located.

A volume formatted with the FAT file system is allocated in clusters. The default
cluster size is determined by the size of the volume. For the FAT file system,
the cluster number must fit in 16 bits and must be a power of two.

Structure of a FAT
Volume

The figure below illustrates how the FAT file system organizes a volume.

Figure 7-2

This section covers information about the FAT system. Topics covered are:

• FAT Partition Boot Sector

• FAT File System

• FAT Root Folder

• FAT Folder Structure

• FAT32 Features

Table 7-1 displays differences between the FAT systems:

Table 7-1 Differences Between FAT Systems

For more detailed information see resource kits on Microsoft's web site
http://www.microsoft.com/windows/reskits/webresources/default.asp or
Microsoft Developers Network (MSDN) http://msdn.microsoft.com.

System
Bytes Per Cluster Within
File Allocation Table Cluster Limit

FAT12 1.5 Fewer than 4,087 clusters.

FAT16 2 Between 4,087 and 65,526 clusters,
inclusive.

FAT32 4 Between 65,526 and 268,435,456
clusters, inclusive.

http://www.microsoft.com/windows/reskits/webresources/default.asp
http://msdn.microsoft.com

60 CHAPTER 7: DATA RECOVERY CONCEPTS
FAT Partition Boot Sector

The Partition Boot Sector contains information that the file system uses to
access the volume. On x86-based computers, the Master Boot Record use the
Partition Boot Sector on the system partition to load the operating system
kernel files.

Table 7-2 describes the fields in the Partition Boot Sector for a volume
formatted with the FAT file system.

Table 7-2 Fields in Partition Boot Sector (FAT File System)

Table 7-3 describes BIOS Parameter Block and Extended BIOS Parameter
Block Fields.

Table 7-3 BIOS Parameter Block and Extended BIOS Parameter Block Fields

Byte Offset
(in hex) Field Length

Sample
Value Description

00 3 bytes EB 3C 90 Jump instruction.

03 8 bytes MSDOS5.0 OEM Name in text

0B 25 bytes BIOS Parameter Block

24 26 bytes Extended BIOS Parameter Block

3E 448 bytes Bootstrap code

1FE 2 bytes 0x55AA End of sector marker

Byte Offset
Field
Length

Sample
Value Description

0x0B WORD 0x0002 Bytes per Sector. The size of a hardware sector.
For most disks in use in the United States, the
value of this field is 512.

0x0D BYTE 0x08 Sectors Per Cluster. The number of sectors in a
cluster. The default cluster size for a volume
depends on the volume size and the file system.

0x0E WORD 0x0100 Reserved Sectors. The number of sectors from
the Partition Boot Sector to the start of the first
file allocation table, including the Partition Boot
Sector. The minimum value is 1. If the value is
greater than 1, it means that the bootstrap code
is too long to fit completely in the Partition Boot
Sector.

0x10 BYTE 0x02 Number of file allocation tables (FATs). The
number of copies of the file allocation table on
the volume. Typically, the value of this field is 2.

0x11 WORD 0x0002 Root Entries. The total number of file name
entries that can be stored in the root folder of the
volume. One entry is always used as a Volume
Label. Files with long filenames use up multiple
entries per file. Therefore, the largest number of
files in the root folder is typically 511, but you will
run out of entries sooner if you use long
filenames.

0x13 WORD 0x0000 Small Sectors. The number of sectors on the
volume if the number fits in 16 bits (65535). For
volumes larger than 65536 sectors, this field has
a value of 0 and the Large Sectors field is used
instead.

The FAT File System 61
For more detailed information see resource kits on Microsoft's web site
http://www.microsoft.com/windows/reskits/webresources/default.asp or
Microsoft Developers Network (MSDN) http://msdn.microsoft.com

File Allocation
System

The FAT file allocation system is named for its method of organization, the file
allocation table, which resides at the beginning of the volume. To protect the
volume, two copies of the table are kept, in case one becomes damaged. In
addition, the file allocation tables must be stored in a fixed location so that the
files needed to start the system can be correctly located.

The file allocation table contains the following types of information about each
cluster on the volume (see example below for FAT16):

0x15 BYTE 0xF8 Media Type. Provides information about the
media being used. A value of 0xF8 indicates a
hard disk.

0x16 WORD 0xC900 Sectors per file allocation table (FAT). Number
of sectors occupied by each of the file allocation
tables on the volume. By using this information,
together with the Number of FATs and Reserved
Sectors, you can compute where the root folder
begins. By using the number of entries in the
root folder, you can also compute where the
user data area of the volume begins.

0x18 WORD 0x3F00 Sectors per Track. The apparent disk geometry
in use when the disk was low-level formatted.

0x1A WORD 0x1000 Number of Heads. The apparent disk geometry
in use when the disk was low-level formatted.

0x1C DWORD 3F 00 00 00 Hidden Sectors. Same as the Relative Sector
field in the Partition Table.

0x20 DWORD 51 42 06 00 Large Sectors. If the Small Sectors field is zero,
this field contains the total number of sectors in
the volume. If Small Sectors is nonzero, this field
contains zero.

0x24 BYTE 0x80 Physical Disk Number. This is related to the
BIOS physical disk number. Floppy drives are
numbered starting with 0x00 for the A disk.
Physical hard disks are numbered starting with
0x80. The value is typically 0x80 for hard disks,
regardless of how many physical disk drives
exist, because the value is only relevant if the
device is the startup disk.

0x25 BYTE 0x00 Current Head. Not used by the FAT file system.

0x26 BYTE 0x29 Signature. Must be either 0x28 or 0x29 in order
to be recognized by Windows NT.

0x27 4 bytes CE 13 46 30 Volume Serial Number. A unique number that is
created when you format the volume.

0x2B 11 bytes NO NAME Volume Label. This field was used to store the
volume label, but the volume label is now stored
as special file in the root directory.

0x36 8 bytes FAT16 System ID. Either FAT12 or FAT16, depending
on the format of the disk.

Byte Offset
Field
Length

Sample
Value Description

http://www.microsoft.com/windows/reskits/webresources/default.asp
http://msdn.microsoft.com

62 CHAPTER 7: DATA RECOVERY CONCEPTS
• Unused (0x0000)

• Cluster in use by a file

• Bad cluster (0xFFF7)

• Last cluster in a file (0xFFF8-0xFFFF)

There is no organization to the FAT folder structure, and files are given the first
available location on the volume. The starting cluster number is the address of
the first cluster used by the file. Each cluster contains a pointer to the next
cluster in the file, or an indication (0xFFFF) that this cluster is the end of the file.
These links and end of file indicators are shown below.

Figure 7-3 Example of File Allocation Table

This illustration shows three files. The file File1.txt is a file that is large enough
to use three clusters. The second file, File2.txt, is a fragmented file that also
requires three clusters. A small file, File3.txt, fits completely in one cluster. In
each case, the folder structure points to the first cluster of the file.

For more detailed information see resource kits on Microsoft's web site
http://www.microsoft.com/windows/reskits/webresources/default.asp or
Microsoft Developers Network (MSDN) http://msdn.microsoft.com

FAT Root Folder The root folder contains an entry for each file and folder on the root. The only
difference between the root folder and other folders is that the root folder is on a
specified location on the disk and has a fixed size (512 entries for a hard disk,
number of entries on a floppy disk depends on the size of the disk).

See Folder Structure topic for details about folder organization.

For more detailed information see resource kits on Microsoft's web site
http://www.microsoft.com/windows/reskits/webresources/default.asp or
Microsoft Developers Network (MSDN) http://msdn.microsoft.com

FAT Folder Structure Folders have set of 32-byte Folder Entries for each file and subfolder
contained in the folder (see example figure below).

The Folder Entry includes the following information:

• Name (eight-plus-three characters)

• Attribute byte (8 bits worth of information, described later in this section)

• Create time (24 bits)

http://www.microsoft.com/windows/reskits/webresources/default.asp
http://msdn.microsoft.com
http://msdn.microsoft.com
http://www.microsoft.com/windows/reskits/webresources/default.asp
http://msdn.microsoft.com
http://msdn.microsoft.com

The FAT File System 63
• Create date (16 bits)

• Last access date (16 bits)

• Last modified time (16 bits)

• Last modified date (16 bits.)

• Starting cluster number in the file allocation table (16 bits)

• File size (32 bits)

There is no organization to the FAT folder structure, and files are given the first
available location on the volume. The starting cluster number is the address of
the first cluster used by the file. Each cluster contains a pointer to the next
cluster in the file, or an indication (0xFFFF) that this cluster is the end of the file.
See File Allocation System for details.

The information in the folder is used by all operating systems that support the
FAT file system. In addition, Windows NT can store additional time stamps in a
FAT folder entry. These time stamps show when the file was created or last
accessed and are used principally by POSIX applications.

Because all entries in a folder are the same size, the attribute byte for each
entry in a folder describes what kind of entry it is. One bit indicates that the
entry is for a subfolder, while another bit marks the entry as a volume label.
Normally, only the operating system controls the settings of these bits.

A FAT file has four attributes bits that can be turned on or off by the user —
archive file, system file, hidden file, and read-only file.

Filenames on FAT Volumes

Beginning with Windows NT 3.5, files created or renamed on FAT volumes use
the attribute bits to support long filenames in a way that does not interfere with
how MS-DOS or OS/2 accesses the volume. Whenever a user creates a file
with a long filename, Windows creates an eight-plus-three name for the file. In
addition to this conventional entry, Windows creates one or more secondary
folder entries for the file, one for each 13 characters in the long filename. Each
of these secondary folder entries stores a corresponding part of the long
filename in Unicode. Windows sets the volume, read-only, system, and hidden
file attribute bits of the secondary folder entry to mark it as part of a long
filename. MS-DOS and OS/2 generally ignore folder entries with all four of
these attribute bits set, so these entries are effectively invisible to these
operating systems. Instead, MS-DOS and OS/2 access the file by using the
conventional eight-plus-three filename contained in the folder entry for the file.

64 CHAPTER 7: DATA RECOVERY CONCEPTS
Example of Folder Entries for the long filename

Figure 7-4 below shows all of the folder entries for the file Thequi~1.fox, which
has a long name of The quick brown.fox. The long name is in Unicode, so each
character in the name uses two bytes in the folder entry. The attribute field for
the long name entries has the value 0x0F. The attribute field for the short name
is 0x20.

Figure 7-4 Long File Name Folder Entry Example

(i) Note: Windows NT/2000/XP and Windows 95/98/ME use the same algorithm to create
long and short filenames. On computers that dual-boot these two operating systems,
files that you create when running one of the operating systems can be accessed when
running the other.

FAT32 Features The following topics describe the FAT32 file system.

• File System Specifications

• Boot Sector and Bootstrap Modifications

• FAT Mirroring

• Partition Types

File System Specifications

FAT32 is a derivative of the File Allocation Table (FAT) file system that
supports drives with over 2GB of storage. Because FAT32 drives can contain
more than 65,526 clusters, smaller clusters are used than on large FAT16
drives. This method results in more efficient space allocation on the FAT32
drive.

The largest possible file for a FAT32 drive is 4GB minus 2 bytes.

The FAT File System 65
The FAT32 file system includes four bytes per cluster within the file allocation
table. Note that the high 4 bits of the 32-bit values in the FAT32 file allocation
table are reserved and are not part of the cluster number.

Boot Sector and Bootstrap Modifications

Table 7-4 Modifications to Boot Sector

BPB (FAT32)

The BPB for FAT32 drives is an extended version of the FAT16/FAT12 BPB. It
contains identical information to a standard BPB, but also includes several
extra fields for FAT32 specific information.

This structure is implemented in Windows OEM Service Release 2 and later.

A_BF_BPB STRUC
 A_BF_BPB_BytesPerSector DW ?
 A_BF_BPB_SectorsPerCluster DB ?
 A_BF_BPB_ReservedSectors DW ?
 A_BF_BPB_NumberOfFATs DB ?
 A_BF_BPB_RootEntries DW ?
 A_BF_BPB_TotalSectors DW ?
 A_BF_BPB_MediaDescriptor DB ?
 A_BF_BPB_SectorsPerFAT DW ?

Modifications Description

Reserved Sectors FAT32 drives contain more reserved sectors than FAT16
or FAT12 drives. The number of reserved sectors is
usually 32, but can vary.

Boot Sector Modifications Because a FAT32 BIOS Parameter Block (BPB),
represented by the BPB structure, is larger than a
standard BPB, the boot record on FAT32 drives is greater
than 1 sector. In addition, there is a sector in the reserved
area on FAT32 drives that contains values for the count
of free clusters and the cluster number of the most
recently allocated cluster. These values are members of
the BIGFATBOOTFSINFO structure which is contained
within this sector. These additional fields allow the system
to initialize the values without having to read the entire file
allocation table.

Root Directory The root directory on a FAT32 drive is not stored in a
fixed location as it is on FAT16 and FAT12 drives. On
FAT32 drives, the root directory is an ordinary cluster
chain. The A_BF_BPB_RootDirStrtClus member in the
BPB structure contains the number of the first cluster in
the root directory. This allows the root directory to grow
as needed. In addition, the BPB_RootEntries member of
BPB is ignored on a FAT32 drive.

Sectors Per FAT The A_BF_BPB_SectorsPerFAT member of BPB is
always zero on a FAT32 drive. Additionally, the
A_BF_BPB_BigSectorsPerFat and
A_BF_BPB_BigSectorsPerFatHi members of the
updated BPB provide equivalent information for FAT32
media.

66 CHAPTER 7: DATA RECOVERY CONCEPTS
 A_BF_BPB_SectorsPerTrack DW ?
 A_BF_BPB_Heads DW ?
 A_BF_BPB_HiddenSectors DW ?
 A_BF_BPB_HiddenSectorsHigh DW ?
 A_BF_BPB_BigTotalSectors DW ?
 A_BF_BPB_BigTotalSectorsHigh DW ?
 A_BF_BPB_BigSectorsPerFat DW ?
 A_BF_BPB_BigSectorsPerFatHi DW ?
 A_BF_BPB_ExtFlags DW ?
 A_BF_BPB_FS_Version DW ?
 A_BF_BPB_RootDirStrtClus DW ?
 A_BF_BPB_RootDirStrtClusHi DW ?
 A_BF_BPB_FSInfoSec DW ?
 A_BF_BPB_BkUpBootSec DW ?
 A_BF_BPB_Reserved DW 6 DUP (?)
A_BF_BPB ENDS

Table 7-5 BPB Members

Member Name Description

A_BF_BPB_BytesPerSector The number of bytes per sector.

A_BF_BPB_SectorsPerCluster The number of sectors per cluster.

A_BF_BPB_ReservedSectors The number of reserved sectors, beginning with
sector 0.

A_BF_BPB_NumberOfFATs The number of File Allocation Tables.

A_BF_BPB_RootEntries This member is ignored on FAT32 drives.

A_BF_BPB_TotalSectors The size of the partition, in sectors.

A_BF_BPB_MediaDescriptor The media descriptor. Values in this member are
identical to standard BPB.

A_BF_BPB_SectorsPerFAT The number of sectors per FAT.

(i) Note: This member will always be zero in a FAT32 BPB. Use the values from
A_BF_BPB_BigSectorsPerFat and A_BF_BPB_BigSectorsPerFatHi for FAT32
media.

A_BF_BPB_SectorsPerTrack The number of sectors per track.

A_BF_BPB_Heads The number of read/write heads on the drive.

A_BF_BPB_HiddenSectors The number of hidden sectors on the drive.

A_BF_BPB_HiddenSectorsHigh The high word of the hidden sectors value.

A_BF_BPB_BigTotalSectors The total number of sectors on the FAT32 drive.

A_BF_BPB_BigTotalSectorsHigh The high word of the FAT32 total sectors value.

A_BF_BPB_BigSectorsPerFat The number of sectors per FAT on the FAT32 drive.

A_BF_BPB_BigSectorsPerFatHi The high word of the FAT32 sectors per FAT value.

A_BF_BPBExtFlags Flags describing the drive. Bit 8 of this value
indicates whether or not information written to the
active FAT will be written to all copies of the FAT.
The low 4 bits of this value contain the 0-based FAT
number of the Active FAT, but are only meaningful if
bit 8 is set. This member can contain a combination
of the following values.

The FAT File System 67
BIGFATBOOTFSINFO (FAT32)

Contains information about the file system on a FAT32 volume. This structure is
implemented in Windows OEM Service Release 2 and later.

BIGFATBOOTFSINFO STRUC
 bfFSInf_Sig DD ?
 bfFSInf_free_clus_cnt DD ?
 bfFSInf_next_free_clus DD ?
 bfFSInf_resvd DD 3 DUP (?)
BIGFATBOOTFSINFO ENDS

Table 7-6 BIGFATBOOTFSINFO Members

Value

BGBPB_F_ActiveFATMsk

BGBPB_F_NoFATMirror

Description

Mask for low four bits. (000Fh)

Mask indicating FAT (0080h) mirroring state. If set,
FAT mirroring is disabled. If clear, FAT mirroring is
enabled.

Bits 4-6 and 8-15 are reserved.

A_BF_BPB_FS_Version The file system version number of the FAT32 drive.
The high byte represents the major version, and the
low byte represents the minor version.

A_BF_BPB_RootDirStrtClus The cluster number of the first cluster in the FAT32
drive's root directory.

A_BF_BPB_RootDirStrtClusHi The high word of the FAT32 starting cluster number.

A_BF_BPB_FSInfoSec The sector number of the file system information
sector. The file system info sector contains a
BIGFATBOOTFSINFO structure. This member is set
to 0FFFFh if there is no FSINFO sector. Otherwise,
this value must be non-zero and less than the
reserved sector count.

A_BF_BPB_BkUpBootSec The sector number of the backup boot sector. This
member is set to 0FFFFh if there is no backup boot
sector. Otherwise, this value must be non-zero and
less than the reserved sector count.

A_BF_BPB_Reserved Reserved member.

Member Name Description

bfFSInf_Sig The signature of the file system information sector. The
value in this member is FSINFOSIG (0x61417272L).

bfFSInf_free_clus_cnt The count of free clusters on the drive. Set to -1 when the
count is unknown.

bfFSInf_next_free_clus The cluster number of the cluster that was most recently
allocated.

bfFSInf_resvd Reserved member.

Member Name Description

68 CHAPTER 7: DATA RECOVERY CONCEPTS
FAT Mirroring

On all FAT drives, there may be multiple copies of the FAT. If an error occurs
reading the primary copy, the file system will attempt to read from the backup
copies. On FAT16 and FAT12 drives, the first FAT is always the primary copy
and any modifications will automatically be written to all copies. However, on
FAT32 drives, FAT mirroring can be disabled and a FAT other than the first one
can be the primary (or “active”) copy of the FAT.

Mirroring is enabled by clearing bit 0x0080 in the extdpb_flags member of a
FAT32 Drive Parameter Block (DPB) structure.

Table 7-7 FAT Mirroring

Mirroring Description

When Enabled
(bit 0x0080
clear)

With mirroring enabled, whenever a FAT sector is written, it will also be
written to every other FAT. Also, a mirrored FAT sector can be read
from any FAT.

A FAT32 drive with multiple FATs will behave the same as FAT16 and
FAT12 drives with multiple FATs. That is, the multiple FATs are
backups of each other.

When Disabled
(bit 0x0080 set)

With mirroring disabled, only one of the FATs is active. The active FAT
is the one specified by bits 0 through 3 of the extdpb_flags member of
DPB. The other FATs are ignored.

Disabling mirroring allows better handling of a drive with a bad sector in
one of the FATs. If a bad sector exists, access to the damaged FAT
can be completely disabled. Then, a new FAT can be built in one of the
inactive FATs and then made accessible by changing the active FAT
value in extdpb_flags.

The FAT File System 69
Drive Parameter Block (FAT32)

The DPB was extended to include FAT32 information. Changes are effective
for Windows 95 OEM Service Release 2 and later.

DPB STRUC
 dpb_drive DB ?
 dpb_unit DB ?
 dpb_sector_size DW ?
 dpb_cluster_mask DB ?
 dpb_cluster_shift DB ?
 dpb_first_fat DW ?
 dpb_fat_count DB ?
 dpb_root_entries DW ?
 dpb_first_sector DW ?
 dpb_max_cluster DW ?
 dpb_fat_size DW ?
 dpb_dir_sector DW ?
 dpb_reserved2 DD ?
 dpb_media DB ?
ifdef NOTFAT32
 dpb_first_access DB ?
else
 dpb_reserved DB ?
endif
 dpb_reserved3 DD ?
 dpb_next_free DW ?
 dpb_free_cnt DW ?
ifndef NOTFAT32
 extdpb_free_cnt_hi DW ?
 extdpb_flags DW ?
 extdpb_FSInfoSec DW ?
 extdpb_BkUpBootSec DW ?
 extdpb_first_sector DD ?
 extdpb_max_cluster DD ?
 extdpb_fat_size DD ?
 extdpb_root_clus DD ?
 extdpb_next_free DD ?
endif
DPB ENDS

Table 7-8 DBP Members

Member Name Description

dpb_drive The drive number (0 = A, 1 = B, and so on).

dpb_unit Specifies the unit number. The device driver uses the unit
number to distinguish the specified drive from the other drives
it supports.

dpb_sector_size The size of each sector, in bytes.

dpb_cluster_mask The number of sectors per cluster minus 1.

dpb_cluster_shift The number of sectors per cluster, expressed as a power of 2.

dpb_first_fat The sector number of the first sector containing the file
allocation table (FAT).

dpb_fat_count The number of FATs on the drive.

dpb_root_entries The number of entries in the root directory.

dpb_first_sector The sector number of the first sector in the first cluster.

70 CHAPTER 7: DATA RECOVERY CONCEPTS
FAT32 Partition Types

The following table displays all valid partition types and their corresponding
values for use in the Part_FileSystem member of the s_partition structure.

Table 7-9 Partition Type Values

dpb_max_cluster The number of clusters on the drive plus 1. This member is
undefined for FAT32 drives.

dpb_fat_size The number of sectors occupied by each FAT. The value of
zero indicates a FAT32 drive. Use the value in
extdpb_fat_size instead.

dpb_dir_sector The sector number of the first sector containing the root
directory. This member is undefined for FAT32 drives.

dpb_reserved2 Reserved member. Do not use.

dpb_media Specifies the media descriptor for the medium in the specified
drive.

reserved Reserved member. Do not use.

dpb_first_access Indicates whether the medium in the drive has been
accessed. This member is initialized to -1 to force a media
check the first time this DPB is used.

dpb_reserved3 Reserved member. Do not use.

dpb_next_free The cluster number of the most recently allocated cluster.

dpb_free_cnt The number of free clusters on the medium. This member is
0FFFFh if the number is unknown.

extdpb_free_cnt_hi The high word of free count.

extdpb_flags Flags describing the drive. The low 4 bits of this value contain
the 0-based FAT number of the Active FAT. This member can
contain a combination of the following values.

Value

BGBPB_F_ActiveFATMsk
(000Fh)

BGBPB_F_NoFATMirror
(0080h)

Description

Mask for low four bits.

Do not mirror active FAT to inactive FATs.

Bits 4-6 and 8-15 are reserved.

extdpb_FSInfoSec The sector number of the file system information sector. This
member is set to 0FFFFh if there is no FSINFO sector.
Otherwise, this value must be non-zero and less than the
reserved sector count.

extdpb_BkUpBootSec The sector number of the backup boot sector. This member is
set to 0FFFFh if there is no backup boot sector. Otherwise,
this value must be non-zero and less than the reserved sector
count.

extdpb_first_sector The first sector of the first cluster.

extdpb_max_cluster The number of clusters on the drive plus 1.

extdpb_fat_size The number of sectors occupied by the FAT.

extdpb_root_clus The cluster number of the first cluster in the root directory.

extdpb_next_free The number of the cluster that was most recently allocated.

Value Description

PART_UNKNOWN (00h) Unknown

Member Name Description

The FAT File System 71
s_partition (FAT32)

(i) Note: Values for head and track are 0-based. Sector values are 1-based. This structure
is implemented in Windows OEM Service Release 2 and later.

s_partition STRUC
 Part_BootInd DB ?
 Part_FirstHead DB ?
 Part_FirstSector DB ?
 Part_FirstTrack DB ?
 Part_FileSystem DB ?
 Part_LastHead DB ?
 Part_LastSector DB ?
 Part_LastTrack DB ?
 Part_StartSector DD ?
 Part_NumSectors DD ?
s_partition ENDS

Table 7-10 s_partition Members

PART_DOS2_FAT (01h) 12-bit FAT

PART_DOS3_FAT (04h) 16-bit FAT. Partitions smaller than 32MB.

PART_EXTENDED (05h) Extended MS-DOS Partition

PART_DOS4_FAT (06h) 16-bit FAT. Partitions larger than or equal to 32MB.

PART_DOS32 (0Bh) 32-bit FAT. Partitions up to 2047GB.

PART_DOS32X (0Ch) Same as PART_DOS32 (0Bh), but uses Logical
Block Address Int 13h extensions.

PART_DOSX13 (0Eh) Same as PART_DOS4_FAT (06h), but uses Logical
Block Address Int 13h extensions.

PART_DOSX13X (0Fh) Same as PART_EXTENDED (05h), but uses Logical
Block Address Int 13h extensions.

Value Description

Member Name Description

Part_BootInd Specifies whether the partition is bootable or not. This
value could be set to PART_BOOTABLE (80h), or
PART_NON_BOOTABLE(00h). The first partition
designated as PART_BOOTABLE is the boot partition.
All others are not. Setting multiple partitions to
PART_BOOTABLE will result in boot errors.

Part_FirstHead The first head of this partition. This is a 0-based
number representing the offset from the beginning of
the disk. The partition includes this head.

Part_FirstSector The first sector of this partition. This is a 1-based, 6-bit
number representing the offset from the beginning of
the disk. The partition includes this sector. Bits 0
through 5 specify the 6-bit value; bits 6 and 7 are used
with the Part_FirstTrack member.

Part_FirstTrack The first track of this partition. This is an inclusive
0-based, 10-bit number that represents the offset from
the beginning of the disk. The high 2 bits of this value
are specified by bits 6 and 7 of the Part_FirstSector
member.

72 CHAPTER 7: DATA RECOVERY CONCEPTS
PartFileSystem Specifies the file system for the partition. The following
are acceptable values:

Value

PART_UNKNOWN(00h)

PART_DOS2_FAT(01h)

PART_DOS3_FAT(04h)

PART_EXTENDED(05h)

PART_DOS4_FAT(06h)

PART_DOS32(0Bh)

PART_DOS32X(0Ch)

PART_DOSX13(0Eh)

PART_DOSX13X(0Fh)

Description

Unknown.

12-bit FAT.

16-bit FAT. Partition smaller than 32MB.

Extended MS-DOS Partition.

16-bit FAT. Partition larger than or equal to 32MB.

32-bit FAT. Partition up to 2047GB.

Same as PART_DOS32(0Bh), but uses Logical Block
Address Int 13h extensions.

Same as PART_DOS4_FAT(06h), but uses Logical
Block Address Int 13h extensions.

Same as PART_EXTENDED(05h), but uses Logical
Block Address Int 13h extensions.

Part_LastHead The last head of the partition. This is a 0-based
number that represents the offset from the beginning
of the disk. The partition includes the head specified by
this member.

Part_LastSector The last sector of this partition. This is a 1-based, 6-bit
number representing offset from the beginning of the
disk. The partition includes the sector specified by this
member. Bits 0 through 5 specify the 6-bit value; bits 6
and 7 are used with the Part_LastTrack member.

Part_LastTrack The last track of this partition. This is a 0-based, 10-bit
number that represents offset from the beginning of
the disk. The partition includes this track. The high 2
bits of this value are specified by bits 6 and 7 of the
Part_LastSector member.

Part_StartSector Specifies the 1-based number of the first sector on the
disk. This value may not be accurate for extended
partitions. Use the Part_FirstSector value for
extended partitions.

Part_NumSectors The 1-based number of sectors in the partition.

Member Name Description

The NTFS File System 73
The NTFS File
System

The Windows NT file system (NTFS) provides a combination of performance,
reliability, and compatibility not found in the FAT file system. It is designed to
quickly perform standard file operations such as read, write, and search — and
even advanced operations such as file-system recovery — on very large hard
disks.

Formatting a volume with the NTFS file system results in the creation of several
system files and the Master File Table (MFT), which contains information about
all the files and folders on the NTFS volume.

The first information on an NTFS volume is the Partition Boot Sector, which
starts at sector 0 and can be up to 16 sectors long. The first file on an NTFS
volume is the Master File Table (MFT).

The following figure illustrates the layout of an NTFS volume when formatting
has finished.

Figure 7-5 Formatted NTFS Volume

This chapter covers information about NTFS. Topics covered are listed below:

• NTFS Partition Boot Sector

• NTFS Master File Table (MFT)

• NTFS File Types

• NTFS Data Integrity and Recoverability

The NTFS file system includes security features required for file servers and
high-end personal computers in a corporate environment. The NTFS file
system also supports data access control and ownership privileges that are
important for the integrity of critical data. While folders shared on a Windows
NT computer are assigned particular permissions, NTFS files and folders can
have permissions assigned whether they are shared or not. NTFS is the only
file system on Windows NT that allows you to assign permissions to individual
files.

The NTFS file system has a simple, yet very powerful design. Basically,
everything on the volume is a file and everything in a file is an attribute, from the
data attribute, to the security attribute, to the file name attribute. Every sector on
an NTFS volume that is allocated belongs to some file. Even the file system
metadata (information that describes the file system itself) is part of a file.

What's New in NTFS5 (Windows 2000)

Encryption The Encrypting File System (EFS) provides the core file
encryption technology used to store encrypted files on NTFS volumes. EFS
keeps files safe from intruders who might gain unauthorized physical access to
sensitive, stored data (for example, by stealing a portable computer or external
disk drive).

74 CHAPTER 7: DATA RECOVERY CONCEPTS
Disk Quotas Windows 2000 supports disk quotas for NTFS volumes. You can
use disk quotas to monitor and limit disk-space use.

Reparse Points Reparse points are new file system objects in NTFS that can
be applied to NTFS files or folders. A file or folder that contains a reparse point
acquires additional behavior not present in the underlying file system. Reparse
points are used by many of the new storage features in Windows 2000,
including volume mount points.

Volume Mount Points Volume mount points are new to NTFS. Based on
reparse points, volume mount points allow administrators to graft access to the
root of one local volume onto the folder structure of another local volume.

Sparse Files Sparse files allow programs to create very large files but
consume disk space only as needed.

Distributed Link Tracking NTFS provides a link-tracking service that
maintains the integrity of shortcuts to files as well as OLE links within
compound documents.

For more detailed information see resource kits on Microsoft's web site
http://www.microsoft.com/windows/reskits/webresources/default.asp or
Microsoft Developers Network (MSDN) http://msdn.microsoft.com

NTFS Partition Boot
Sector

Table 7-11 describes the boot sector of a volume formatted with NTFS. When
you format an NTFS volume, the format program allocates the first 16 sectors
for the boot sector and the bootstrap code.

Table 7-11 NTFS Boot Sector

On NTFS volumes, the data fields that follow the BPB form an extended BPB.
The data in these fields enables Ntldr (NT loader program) to find the master
file table (MFT) during startup. On NTFS volumes, the MFT is not located in a
predefined sector, as on FAT16 and FAT32 volumes. For this reason, the MFT
can be moved if there is a bad sector in its normal location. However, if the data
is corrupted, the MFT cannot be located, and Windows NT/2000 assumes that
the volume has not been formatted.

The following example illustrates the boot sector of an NTFS volume formatted
while running Windows 2000. The printout is formatted in three sections:

• Bytes 0x00– 0x0A are the jump instruction and the OEM ID (shown in bold
print).

Byte Offset Field Length Field Name

0x00 3 bytes Jump Instruction

0x03 LONGLONG OEM ID

0x0B 25 bytes BPB

0x24 48 bytes Extended BPB

0x54 426 bytes Bootstrap Code

0x01FE WORD End of Sector Marker

http://www.microsoft.com/windows/reskits/webresources/default.asp
http://msdn.microsoft.com

The NTFS File System 75
• Bytes 0x0B–0x53 are the BPB and the extended BPB.

• The remaining code is the bootstrap code and the end of sector marker
(shown in bold print).

Physical Sector: Cyl 0, Side 1, Sector 1
00000000: EB 52 90 4E 54 46 53 20 - 20 20 20 00 02
08 00 00 .R.NTFS 00000010: 00 00 00 00 00
F8 00 00 - 3F 00 FF 00 3F 00 00 00?...?...
00000020: 00 00 00 00 80 00 80 00 - 4A F5 7F 00 00
00 00 00J....... 00000030: 04 00 00 00 00
00 00 00 - 54 FF 07 00 00 00 00 00T.......
00000040: F6 00 00 00 01 00 00 00 - 14 A5 1B 74 C9
1B 74 1Ct..t. 00000050: 00 00 00 00 FA
33 C0 8E - D0 BC 00 7C FB B8 C0 073.....|....
00000060: 8E D8 E8 16 00 B8 00 0D - 8E C0 33 DB C6
06 0E 003..... 00000070: 10 E8 53 00 68
00 0D 68 - 6A 02 CB 8A 16 24 00 B4 ..S.h..hj....$..
00000080: 08 CD 13 73 05 B9 FF FF - 8A F1 66 0F B6
C6 40 66 ...s......f...@f 00000090: 0F B6 D1 80 E2
3F F7 E2 - 86 CD C0 ED 06 41 66 0F?.......Af.
000000A0: B7 C9 66 F7 E1 66 A3 20 - 00 C3 B4 41 BB
AA 55 8A ..f..f. ...A..U. 000000B0: 16 24 00 CD 13
72 0F 81 - FB 55 AA 75 09 F6 C1 01 .$...r...U.u....
000000C0: 74 04 FE 06 14 00 C3 66 - 60 1E 06 66 A1
10 00 66 t......f`..f...f 000000D0: 03 06 1C 00 66
3B 06 20 - 00 0F 82 3A 00 1E 66 6Af;. ...:..fj
000000E0: 00 66 50 06 53 66 68 10 - 00 01 00 80 3E
14 00 00 .fP.Sfh.....>... 000000F0: 0F 85 0C 00 E8
B3 FF 80 - 3E 14 00 00 0F 84 61 00>.....a.
00000100: B4 42 8A 16 24 00 16 1F - 8B F4 CD 13 66
58 5B 07 .B..$......fX[.. 00000110: 66 58 66 58 1F
EB 2D 66 - 33 D2 66 0F B7 0E 18 00 fXfX.-f3.f......
00000120: 66 F7 F1 FE C2 8A CA 66 - 8B D0 66 C1 EA
10 F7 36 f......f..f....6 00000130: 1A 00 86 D6 8A
16 24 00 - 8A E8 C0 E4 06 0A CC B8$.........
00000140: 01 02 CD 13 0F 82 19 00 - 8C C0 05 20 00
8E C0 66f 00000150: FF 06 10 00 FF
0E 0E 00 - 0F 85 6F FF 07 1F 66 61o...fa
00000160: C3 A0 F8 01 E8 09 00 A0 - FB 01 E8 03 00
FB EB FE 00000170: B4 01 8B F0 AC
3C 00 74 - 09 B4 0E BB 07 00 CD 10<.t........
00000180: EB F2 C3 0D 0A 41 20 64 - 69 73 6B 20 72
65 61 64A disk read 00000190: 20 65 72 72 6F
72 20 6F - 63 63 75 72 72 65 64 00 error occurred.
000001A0: 0D 0A 4E 54 4C 44 52 20 - 69 73 20 6D 69
73 73 69 ..NTLDR is missi 000001B0: 6E 67 00 0D 0A
4E 54 4C - 44 52 20 69 73 20 63 6F ng...NTLDR is co

76 CHAPTER 7: DATA RECOVERY CONCEPTS
000001C0: 6D 70 72 65 73 73 65 64 - 00 0D 0A 50 72
65 73 73 mpressed...Press 000001D0: 20 43 74 72 6C
2B 41 6C - 74 2B 44 65 6C 20 74 6F Ctrl+Alt+Del to
000001E0: 20 72 65 73 74 61 72 74 - 0D 0A 00 00 00
00 00 00 restart........ 000001F0: 00 00 00 00 00
00 00 00 - 83 A0 B3 C9 00 00 55 AAU.

The following table describes the fields in the BPB and the extended BPB on
NTFS volumes. The fields starting at 0x0B, 0x0D, 0x15, 0x18, 0x1A, and 0x1C
match those on FAT16 and FAT32 volumes. The sample values correspond to
the data in this example.

Table 7-12 BPB Fields on NTFS

Protecting the Boot Sector

Because a normally functioning system relies on the boot sector to access a
volume, it is highly recommended that you run disk scanning tools such as
Chkdsk regularly, as well as back up all of your data files to protect against data
loss if you lose access to a volume.

Byte Offset
Field
Length Sample Value Field Name

0x0B WORD 0x0002 Bytes Per Sector

0x0D BYTE 0x08 Sectors Per Cluster

0x0E WORD 0x0000 Reserved Sectors

0x10 3 BYTES 0x000000 always 0

0x13 WORD 0x0000 not used by NTFS

0x15 BYTE 0xF8 Media Descriptor

0x16 WORD 0x0000 always 0

0x18 WORD 0x3F00 Sectors Per Track

0x1A WORD 0xFF00 Number Of Heads

0x1C DWORD 0x3F000000 Hidden Sectors

0x20 DWORD 0x00000000 not used by NTFS

0x24 DWORD 0x80008000 not used by NTFS

0x28 LONGLON
G

0x4AF57F0000000000 Total Sectors

0x30 LONGLON
G

0x0400000000000000 Logical Cluster Number for
the file $MFT

0x38 LONGLON
G

0x54FF070000000000 Logical Cluster Number for
the file $MFTMirr

0x40 DWORD 0xF6000000 Clusters Per File Record
Segment

0x44 DWORD 0x01000000 Clusters Per Index Block

0x48 LONGLON
G

0x14A51B74C91B741C Volume Serial Number

0x50 DWORD 0x00000000 Checksum

The NTFS File System 77
NTFS Master File
Table (MFT)

Each file on an NTFS volume is represented by a record in a special file called
the master file table (MFT). NTFS reserves the first 16 records of the table for
special information. The first record of this table describes the master file table
itself, followed by a MFT mirror record. If the first MFT record is corrupted,
NTFS reads the second record to find the MFT mirror file, whose first record is
identical to the first record of the MFT. The locations of the data segments for
both the MFT and MFT mirror file are recorded in the boot sector. A duplicate of
the boot sector is located at the logical center of the disk.

The third record of the MFT is the log file, used for file recovery. The log file is
discussed in detail later in this chapter. The seventeenth and following records
of the master file table are for each file and directory (also viewed as a file by
NTFS) on the volume.

Figure provides a simplified illustration of the MFT structure:

Figure 7-6 MFT Structure

The master file table allocates a certain amount of space for each file record.
The attributes of a file are written to the allocated space in the MFT. Small files
and directories (typically 1500 bytes or smaller), such as the file illustrated in
next figure, can entirely be contained within the master file table record.

Figure 7-7 MFT Record for a Small File or Directory

This design makes file access very fast. Consider, for example, the FAT file
system, which uses a file allocation table to list the names and addresses of

78 CHAPTER 7: DATA RECOVERY CONCEPTS
each file. FAT directory entries contain an index into the file allocation table.
When you want to view a file, FAT first reads the file allocation table and
assures that it exists. Then FAT retrieves the file by searching the chain of
allocation units assigned to the file. With NTFS, as soon as you look up the file,
it's there for you to use.

Directory records are housed within the master file table just like file records.
Instead of data, directories contain index information. Small directory records
reside entirely within the MFT structure. Large directories are organized into
B-trees, having records with pointers to external clusters containing directory
entries that could not be contained within the MFT structure.

NTFS File Types This section covers the following topics:

• NTFS File Attributes

• NTFS System Files

• NTFS Multiple Data Streams

• NTFS Compressed Files

• NTFS Encrypted Files

• NTFS Sparse Files

NTFS File Attributes

The NTFS file system views each file (or folder) as a set of file attributes.
Elements such as the file's name, its security information, and even its data, are
all file attributes. Each attribute is identified by an attribute type code and,
optionally, an attribute name.

When a file's attributes can fit within the MFT file record, they are called
resident attributes. For example, information such as filename and time stamp
are always included in the MFT file record. When all of the information for a file
is too large to fit in the MFT file record, some of its attributes are nonresident.
The nonresident attributes are allocated one or more clusters of disk space
elsewhere in the volume. NTFS creates the Attribute List attribute to describe
the location of all of the attribute records.

Table 7-13 lists all of the file attributes currently defined by the NTFS file
system. This list is extensible, meaning that other file attributes can be defined
in the future.

Table 7-13 File Attributes Defined by NTFS

Attribute Type Description

Standard Information Includes information such as timestamp and link count.

Attribute List Lists the location of all attribute records that do not fit in the
MFT record.

File Name A repeatable attribute for both long and short file names. The
long name of the file can be up to 255 Unicode characters.
The short name is the 8.3, case-insensitive name for the file.
Additional names, or hard links, required by POSIX can be
included as additional file name attributes.

Security Descriptor Describes who owns the file and who can access it.

The NTFS File System 79
NTFS System Files

NTFS includes several system files, all of which are hidden from view on the
NTFS volume. A system file is one used by the file system to store its metadata
and to implement the file system. System files are placed on the volume by the
Format utility.

Table 7-14 Metadata Stored in the Master File Table

Data Contains file data. NTFS allows multiple data attributes per
file. Each file typically has one unnamed data attribute. A file
can also have one or more named data attributes, each using
a particular syntax.

Object ID A volume-unique file identifier. Used by the distributed link
tracking service. Not all files have object identifiers.

Logged Tool Stream Similar to a data stream, but operations are logged to the
NTFS log file just like NTFS metadata changes. This is used
by EFS.

Reparse Point Used for volume mount points. They are also used by
Installable File System (IFS) filter drivers to mark certain files
as special to that driver.

Index Root Used to implement folders and other indexes.

Index Allocation Used to implement folders and other indexes.

Bitmap Used to implement folders and other indexes.

Volume Information Used only in the $Volume system file. Contains the volume
version.

Volume Name Used only in the $Volume system file. Contains the volume
label.

System File File Name
MFT
Record Purpose of the File

Master file table $Mft 0 Contains one base file record
for each file and folder on an

NTFS volume. If the
allocation information for a

file or folder is too large to fit
within a single record, other
file records are allocated as

well.

Master file table
2

$MftMirr 1 A duplicate image of the first
four records of the MFT. This
file guarantees access to the

MFT in case of a
single-sector failure.

Log file $Log file 2 Contains a list of transaction steps
used for NTFS recoverability. Log file
size depends on the volume size and
can be as large as 4 MB. It is used by
Windows NT/2000 to restore
consistency to NTFS after a system
failure.

Attribute Type Description

80 CHAPTER 7: DATA RECOVERY CONCEPTS
NTFS Multiple Data Streams

NTFS supports multiple data streams, where the stream name identifies a new
data attribute on the file. A handle can be opened to each data stream. A data
stream, then, is a unique set of file attributes. Streams have separate
opportunistic locks, file locks, and sizes, but common permissions.

This feature enables you to manage data as a single unit. The following is an
example of an alternate stream:

myfile.dat:stream2

A library of files might exist where the files are defined as alternate streams, as
in the following example:

library:file1
 :file2
 :file3

A file can be associated with more than one application at a time, such as
Microsoft® Word and Microsoft® WordPad. For instance, a file structure like
the following illustrates file association, but not multiple files:

program:source_file
 :doc_file
 :object_file
 :executable_file

To create an alternate data stream, at the command prompt, you can type
commands such as:

Volume $Volume 3 Contains information about the volume,
such as the volume label and the
volume version.

Attribute definitions $AttrDef 4 A table of attribute names, numbers,
and descriptions.

Root file name index $ 5 The root folder.

Cluster bitmap $Bitmap 6 A representation of the volume
showing which clusters are in use.

Boot sector $Boot 7 Includes the BPB used to mount the
volume and additional bootstrap loader
code used if the volume is bootable.

Bad cluster file $BadClus 8 Contains bad clusters for the volume.

Security file $Secure 9 Contains unique security descriptors
for all files within a volume.

Upcase table $Upcase 10 Converts lowercase characters to
matching Unicode uppercase
characters.

NTFS extension file $Extend 11 Used for various optional extensions
such as quotas, reparse point data,
and object identifiers.

12–15 Reserved for future use.

System File File Name
MFT
Record Purpose of the File

The NTFS File System 81
echo text>program:source_file
more <program:source_file

(!) Important: When you copy an NTFS file to a FAT volume, such as a floppy disk, data
streams and other attributes not supported by FAT are lost.

NTFS Compressed Files

Windows NT/2000 supports compression on individual files, folders, and entire
NTFS volumes. Files compressed on an NTFS volume can be read and written
by any Windows-based application without first being decompressed by
another program. Decompression occurs automatically when the file is read.
The file is compressed again when it is closed or saved. Compressed files and
folders have an attribute of C when viewed in Windows Explorer.

Only NTFS can read the compressed form of the data. When an application
such as Microsoft® Word or an operating system command such as copy
requests access to the file, the compression filter driver decompresses the file
before making it available. For example, if you copy a compressed file from
another Windows NT/2000–based computer to a compressed folder on your
hard disk, the file is decompressed when read, copied, and then recompressed
when saved.

This compression algorithm is similar to that used by the Windows 98
application DriveSpace 3, with one important difference — the limited
functionality compresses the entire primary volume or logical volume. NTFS
allows for the compression of an entire volume, of one or more folders within a
volume, or even one or more files within a folder of an NTFS volume.

The compression algorithms in NTFS are designed to support cluster sizes of
up to 4 KB. When the cluster size is greater than 4 KB on an NTFS volume,
none of the NTFS compression functions are available.

Each NTFS data stream contains information that indicates whether any part of
the stream is compressed. Individual compressed buffers are identified by
“holes” following them in the information stored for that stream. If there is a
hole, NTFS automatically decompresses the preceding buffer to fill the hole.

NTFS provides real-time access to a compressed file, decompressing the file
when it is opened and compressing it when it is closed. When writing a
compressed file, the system reserves disk space for the uncompressed size.
The system gets back unused space as each individual compression buffer is
compressed.

NTFS Encrypted Files (Windows 2000 only)

The Encrypting File System (EFS) provides the core file encryption technology
used to store encrypted files on NTFS volumes. EFS keeps files safe from
intruders who might gain unauthorized physical access to sensitive, stored data
(for example, by stealing a portable computer or external disk drive).

EFS uses symmetric key encryption in conjunction with public key technology
to protect files and ensure that only the owner of a file can access it. Users of
EFS are issued a digital certificate with a public key and a private key pair. EFS

82 CHAPTER 7: DATA RECOVERY CONCEPTS
uses the key set for the user who is logged on to the local computer where the
private key is stored.

Users work with encrypted files and folders just as they do with any other files
and folders. Encryption is transparent to the user who encrypted the file; the
system automatically decrypts the file or folder when the user accesses. When
the file is saved, encryption is reapplied. However, intruders who try to access
the encrypted files or folders receive an “Access denied” message if they try to
open, copy, move, or rename the encrypted file or folder.

To encrypt or decrypt a folder or file, set the encryption attribute for folders and
files just as you set any other attribute. If you encrypt a folder, all files and
subfolders created in the encrypted folder are automatically encrypted. It is
recommended that you encrypt at the folder level.

NTFS Sparse Files (Windows 2000 only)

A sparse file has an attribute that causes the I/O subsystem to allocate only
meaningful (nonzero) data. Nonzero data is allocated on disk, and
non-meaningful data (large strings of data composed of zeros) is not. When a
sparse file is read, allocated data is returned as it was stored; non-allocated
data is returned, by default, as zeros.

NTFS deallocates sparse data streams and only maintains other data as
allocated. When a program accesses a sparse file, the file system yields
allocated data as actual data and deallocated data as zeros.

NTFS includes full sparse file support for both compressed and uncompressed
files. NTFS handles read operations on sparse files by returning allocated data
and sparse data. It is possible to read a sparse file as allocated data and a
range of data without retrieving the entire data set, although NTFS returns the
entire data set by default.

With the sparse file attribute set, the file system can deallocate data from
anywhere in the file and, when an application calls, yield the zero data by range
instead of storing and returning the actual data. File system application
programming interfaces (APIs) allow for the file to be copied or backed as
actual bits and sparse stream ranges. The net result is efficient file system

The NTFS File System 83
storage and access. Next figure shows how data is stored with and without the
sparse file attribute set.

Figure 7-8 Windows 2000 Data Storage

(!) Important: If you copy or move a sparse file to a FAT or a non-Windows 2000 NTFS
volume, the file is built to its originally specified size. If the required space is not
available, the operation does not complete.

Data Integrity and Recoverability with NTFS

NTFS is a recoverable file system that guarantees the consistency of the
volume by using standard transaction logging and recovery techniques. In the
event of a disk failure, NTFS restores consistency by running a recovery
procedure that accesses information stored in a log file. The NTFS recovery
procedure is exact, guaranteeing that the volume is restored to a consistent
state. Transaction logging requires a very small amount of overhead.

NTFS ensures the integrity of all NTFS volumes by automatically performing
disk recovery operations the first time a program accesses an NTFS volume
after the computer is restarted following a failure.

NTFS also uses a technique called cluster remapping to minimize the effects of
a bad sector on an NTFS volume.

(!) Important: If either the master boot record (MBR) or boot sector is corrupted, you
might not be able to access data on the volume.

Recovering Data with NTFS

NTFS views each I/O operation that modifies a system file on the NTFS volume
as a transaction, and manages each one as an integral unit. Once started, the
transaction is either completed or, in the event of a disk failure, rolled back

84 CHAPTER 7: DATA RECOVERY CONCEPTS
(such as when the NTFS volume is returned to the state it was in before the
transaction was initiated).

To ensure that a transaction can be completed or rolled back, NTFS records
the suboperations of a transaction in a log file before they are written to the
disk. When a complete transaction is recorded in the log file, NTFS performs
the suboperations of the transaction on the volume cache. After NTFS updates
the cache, it commits the transaction by recording in the log file that the entire
transaction is complete.

Once a transaction is committed, NTFS ensures that the entire transaction
appears on the volume, even if the disk fails. During recovery operations, NTFS
redoes each committed transaction found in the log file. Then NTFS locates the
transactions in the log file that were not committed at the time of the system
failure and undoes each transaction suboperation recorded in the log file.
Incomplete modifications to the volume are prohibited.

NTFS uses the Log File service to log all redo and undo information for a
transaction. NTFS uses the redo information to repeat the transaction. The
undo information enables NTFS to undo transactions that are not complete or
that have an error.

(!) Important: NTFS uses transaction logging and recovery to guarantee that the volume
structure is not corrupted. For this reason, all system files remain accessible after a
system failure. However, user data can be lost because of a system failure or a bad
sector.

Cluster Remapping

In the event of a bad-sector error, NTFS implements a recovery technique
called cluster remapping. When Windows 2000 detects a bad-sector, NTFS
dynamically remaps the cluster containing the bad sector and allocates a new
cluster for the data. If the error occurred during a read, NTFS returns a read
error to the calling program, and the data is lost. If the error occurs during a
write, NTFS writes the data to the new cluster, and no data is lost.

NTFS puts the address of the cluster containing the bad sector in its bad cluster
file so the bad sector is not reused.

(!) Important: Cluster remapping is not a backup alternative. Once errors are detected,
the disk should be monitored closely and replaced if the defect list grows. This type of
error is displayed in the Event Log.

The File Recovery Process 85
The File Recovery
Process

The file recovery process can be briefly described as drive or folder scanning to
find deleted entries in Root Folder (FAT) or Master File Table (NTFS) then for
the particular deleted entry, defining clusters chain to be recovered and then
copying contents of these clusters to the newly created file.

Different file systems maintain their own specific logical data structures,
however basically each file system:

• Has a list or catalog of file entries, so we can iterate through this list and
entries, marked as deleted

• Keeps for each entry a list of data clusters, so we can try to find out set of
clusters composing the file

After finding out the proper file entry and assembling set of clusters, composing
the file, read and copy these clusters to another location.

Step by Step with examples:

• Disk Scanning

• Defining the Chain of Clusters

• Recovering the Chain of Clusters

Not every deleted file can be recovered, however there are some assumptions
that are common to all deleted files:

• First, we assume that the file entry still exists (it has not been overwritten
with other data). The fewer files that have been created on the drive where
the deleted file was resided, increases the chances that space for the
deleted file entry has not been used for other entries.

• Second, we assume that the file entry is more-or-less safe to point to the
proper place where file clusters are located. In some cases (it has been
noticed in Windows XP, on large FAT32 volumes) the operating system
damages file entries right after deletion so that the first data cluster becomes
invalid and further entry restoration is not possible.

• Third, we assume that the file data clusters are safe (not overwritten with
other data). The fewer write operations events on the drive where deleted
file resided, the more chances that the space occupied by data clusters of
the deleted file has not been used for other data storage.

General Advice After Data Loss

1 DO NOT WRITE ANYTHING ONTO THE DRIVE CONTAINING YOUR
IMPORTANT DATA THAT YOU HAVE JUST DELETED ACCIDENTALLY!

Even data recovery software installation can spoil your sensitive data. If the
data is really important to you and you do not have another logical drive to
install software to, take the whole hard drive out of the computer and plug it into
another computer where data recovery software has been already installed or
use recovery software that does not require installation, for example recovery
software which is capable to run from bootable floppy.

86 CHAPTER 7: DATA RECOVERY CONCEPTS
2 DO NOT TRY TO SAVE ONTO THE SAME DRIVE DATA THAT YOU FOUND
AND TRYING TO RECOVER!

When saving recovered data onto the same drive where sensitive data is
located, you can intrude in process of recovering by overwriting FAT/MFT
records for this and other deleted entries. It is better to save data onto another
logical, removable, network or floppy drive.

Disk Scanning for
Deleted Entries

Disk Scanning is a process of low-level enumeration of all entries in the Root
Folders on FAT12, FAT16, FAT32 or in Master File Table (MFT) on NTFS,
NTFS5. The goal is to find and display deleted entries.

In spite of different file/folder entry structure for the different file systems, all of
them contain basic file attributes like name, size, creation and modification
date/time, file attributes, existing/deleted status, etc....

Given that a drive contains root file table and any file table (MFT, root folder of
the drive, regular folder, or even deleted folder) has location, size
and predefined structure, we can scan it from the beginning to the end checking
each entry, if it's deleted or not and then display information for all found
deleted entries.

(i) Note: Deleted entries are marked differently depending on the file system. For example,
in FAT any deleted entry, file or folder has been marked with ASCII symbol 229 (OxE5)
that becomes first symbol of the structure entry. On NTFS deleted entry has a special
attribute in file header that points whether the file has been deleted or not.

Example of scanning a folder on FAT16:

1 Existing folder MyFolder entry (long entry and short entry)

0003EE20 41 4D 00 79 00 46 00 6F 00 6C 00 0F 00 09 64 00 AM.y.F.o.l....d.
0003EE30 65 00 72 00 00 00 FF FF FF FF 00 00 FF FF FF FF e.r...yyyy..yyyy
0003EE40 4D 59 46 4F 4C 44 45 52 20 20 20 10 00 4A C4 93 MYFOLDER ..JA“
0003EE50 56 2B 56 2B 00 00 C5 93 56 2B 02 00 00 00 00 00 V+V+..A“V+......

2 Deleted file MyFile.txt entry (long entry and short entry)

0003EE60 E5 4D 00 79 00 46 00 69 00 6C 00 0F 00 BA 65 00 aM.y.F.i.l...?e.
0003EE70 2E 00 74 00 78 00 74 00 00 00 00 00 FF FF FF FF ..t.x.t.....yyyy
0003EE80 E5 59 46 49 4C 45 20 20 54 58 54 20 00 C3 D6 93 aYFILE TXT .AO“
0003EE90 56 2B 56 2B 00 00 EE 93 56 2B 03 00 33 B7 01 00 V+V+..i“V+..3·..

3 Existing file Setuplog.txt entry (the only short entry)

0003EEA0 53 45 54 55 50 4C 4F 47 54 58 54 20 18 8C F7 93 SETUPLOGTXT .??“
0003EEB0 56 2B 56 2B 00 00 03 14 47 2B 07 00 8D 33 03 00 V+V+....G+..?3..
0003EEC0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0003EED0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

This folder contains 3 entries, one of them is deleted. First entry is an existing
folder MyFolder. Second one is a deleted file MyFile.txt Third one is an existing
file Setuplog.txt.

First symbol of the deleted file entry is marked with E5 symbol, so Disk Scanner
can assume that this entry has been deleted.

The File Recovery Process 87
Example of scanning folder on NTFS5 (Windows 2000):

For our drive we have input parameters:

• Total Sectors 610406

• Cluster size 512 bytes

• One Sector per Cluster

• MFT starts from offset 0x4000, non-fragmented

• MFT record size 1024 bytes

• MFT Size 1968 records

Thus we can iterate through all 1968 MFT records, starting from the absolute
offset 0x4000 on the volume looking for the deleted entries. We are interested
in MFT entry 57 having offset 0x4000 + 57 * 1024 = 74752 = 0x12400 because
it contains our recently deleted file “My Presentation.ppt”

Below MFT record number 57 is displayed:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00012400 46 49 4C 45 2A 00 03 00 9C 74 21 03 00 00 00 00 FILE*...?t!.....
00012410 47 00 02 00 30 00 00 00 D8 01 00 00 00 04 00 00 G...0...O.......
00012420 00 00 00 00 00 00 00 00 05 00 03 00 00 00 00 00
00012430 10 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00 `...........
00012440 48 00 00 00 18 00 00 00 20 53 DD A3 18 F1 C1 01 H....... SY?.nA.
00012450 00 30 2B D8 48 E9 C0 01 C0 BF 20 A0 18 F1 C1 01 .0+OHeA.A? .nA.
00012460 20 53 DD A3 18 F1 C1 01 20 00 00 00 00 00 00 00 SY?.nA.
00012470 00 00 00 00 00 00 00 00 00 00 00 00 02 01 00 00
00012480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00012490 30 00 00 00 78 00 00 00 00 00 00 00 00 00 03 00 0...x...........
000124A0 5A 00 00 00 18 00 01 00 05 00 00 00 00 00 05 00 Z...............
000124B0 20 53 DD A3 18 F1 C1 01 20 53 DD A3 18 F1 C1 01 SY?.nA. SY?.nA.
000124C0 20 53 DD A3 18 F1 C1 01 20 53 DD A3 18 F1 C1 01 SY?.nA. SY?.nA.
000124D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000124E0 20 00 00 00 00 00 00 00 0C 02 4D 00 59 00 50 00 M.Y.P.
000124F0 52 00 45 00 53 00 7E 00 31 00 2E 00 50 00 50 00 R.E.S.~.1...P.P.
00012500 54 00 69 00 6F 00 6E 00 30 00 00 00 80 00 00 00 T.i.o.n.0...ˆ...
00012510 00 00 00 00 00 00 02 00 68 00 00 00 18 00 01 00 h.......
00012520 05 00 00 00 00 00 05 00 20 53 DD A3 18 F1 C1 01 SY?.nA.
00012530 20 53 DD A3 18 F1 C1 01 20 53 DD A3 18 F1 C1 01 SY?.nA. SY?.nA.
00012540 20 53 DD A3 18 F1 C1 01 00 00 00 00 00 00 00 00 SY?.nA.........
00012550 00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00
00012560 13 01 4D 00 79 00 20 00 50 00 72 00 65 00 73 00 ..M.y. .P.r.e.s.
00012570 65 00 6E 00 74 00 61 00 74 00 69 00 6F 00 6E 00 e.n.t.a.t.i.o.n.
00012580 2E 00 70 00 70 00 74 00 80 00 00 00 48 00 00 00 ..p.p.t.ˆ...H...
00012590 01 00 00 00 00 00 04 00 00 00 00 00 00 00 00 00
000125A0 6D 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 m.......@.......
000125B0 00 DC 00 00 00 00 00 00 00 DC 00 00 00 00 00 00 .U.......U......
000125C0 00 DC 00 00 00 00 00 00 31 6E EB C4 04 00 00 00 .U......1neA....
000125D0 FF FF FF FF 82 79 47 11 00 00 00 00 00 00 00 00 yyyy‚yG.........
000125E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000125F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00
...............
00012600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

MFT Record has pre-defined structure. It has a set of attributes defining any file
of folder parameters.

MFT Record begins with standard File Record Header (first bold section, offset
0x00):

• “FILE” identifier (4 bytes)

88 CHAPTER 7: DATA RECOVERY CONCEPTS
• Offset to update sequence (2 bytes)

• Size of update sequence (2 bytes)

• $LogFile Sequence Number (LSN) (8 bytes)

• Sequence Number (2 bytes)

• Reference Count (2 bytes)

• Offset to Update Sequence Array (2 bytes)

• Flags (2 bytes)

• Real size of the FILE record (4 bytes)

• Allocated size of the FILE record (4 bytes)

• File reference to the base FILE record (8 bytes)

• Next Attribute Id (2 bytes)

The most important information for us in this block is a file state: deleted or
in-use. If Flags (in red color) field has bit 1 set, it means that file is in-use. In our
example it is zero, i.e. file is deleted.

Starting from 0x48, we have Standard Information Attribute (second bold
section):

• File Creation Time (8 bytes)

• File Last Modification Time (8 bytes)

• File Last Modification Time for File Record (8 bytes)

• File Access Time for File Record (8 bytes)

• DOS File Permissions (4 bytes) 0x20 in our case Archive Attribute

Following standard attribute header, we have File Name Attribute belonging to
DOS name space, short file names, (third bold section, offset 0xA8) and again
following standard attribute header, we have File Name Attribute belonging to
Win32 name space, long file names, (third bold section, offset 0x120):

• File Reference to the Parent Directory (8 bytes)

• File Modification Times (32 bytes)

• Allocated Size of the File (8 bytes)

• Real Size of the File (8 bytes)

• Flags (8 bytes)

• Length of File Name (1 byte)

• File Name Space (1 byte)

• File Name (Length of File Name * 2 bytes)

In our case from this section we can extract file name, “My Presentation.ppt”,
File Creation and Modification times, and Parent Directory Record number.

The File Recovery Process 89
Starting from offset 0x188, there is a non-resident Data attribute (green
section).

• Attribute Type (4 bytes) (e.g. 0x80)

• Length including header (4 bytes)

• Non-resident flag (1 byte)

• Name length (1 byte)

• Offset to the Name (2 bytes)

• Flags (2 bytes)

• Attribute Id (2 bytes)

• Starting VCN (8 bytes)

• Last VCN (8 bytes)

• Offset to the Data Runs (2 bytes)

• Compression Unit Size (2 bytes)

• Padding (4 bytes)

• Allocated size of the attribute (8 bytes)

• Real size of the attribute (8 bytes)

• Initialized data size of the stream (8 bytes)

• Data Runs ...

In this section we are interested in Compression Unit size (zero in our case
means non-compressed), Allocated and Real size of attribute that is equal to
our file size (0xDC00 = 56320 bytes), and Data Runs (see the next topic).

Defining the Chain
of Clusters

To reconstruct a file from a set of clusters, we need to define a chain of
clusters. Here are the steps:

1 Scan the drive to locate and identify data.

2 One-by-one, go through each file cluster (NTFS) or each free cluster (FAT) that
we presume belongs to the file

3 Continue chaining the clusters until the size of the cumulative total of clusters
approximately equals the total size of the deleted file. If the file is fragmented,
the chain of clusters will be composed of several extents (NTFS), or select
probable contiguous clusters and bypass occupied clusters that appear to have
random data (FAT).

The location of these clusters can vary depending on file system. For example,
a file deleted in a FAT volume has its first cluster in the Root entry; the other
clusters can be found in the File Allocation Table. In NTFS each file has a
DATA attribute that describes “data runs”. Disassembling data runs reveals
extents. For each extent there is a start cluster offset and a number of
clusters in extent. By enumerating the extents, the file’s cluster chain can be
assembled.

The clusters chain can be assembled manually, using low-level disk editors,
however it is much simpler using a data recovery utility, like Active@
UNERASER.

90 CHAPTER 7: DATA RECOVERY CONCEPTS
Defining a Cluster Chain in FAT16

In the previous topic, we were examining a sample set of data with a deleted file
named MyFile.txt. This example will continue with the same theme.

The folder we scanned before contains a record for this file:

0003EE60 E5 4D 00 79 00 46 00 69 00 6C 00 0F 00 BA 65 00 aM.y.F.i.l...?e.
0003EE70 2E 00 74 00 78 00 74 00 00 00 00 00 FF FF FF FF ..t.x.t.....yyyy
0003EE80 E5 59 46 49 4C 45 20 20 54 58 54 20 00 C3 D6 93 aYFILE TXT .AO”
0003EE90 56 2B 56 2B 00 00 EE 93 56 2B 03 00 33 B7 01 00 V+V+..i”V+..3..

We can calculate size of the deleted file based on root entry structure. Last four
bytes are 33 B7 01 00 and converting them to decimal value (changing bytes
order), we get 112435 bytes. Previous 2 bytes (03 00) are the number of the
first cluster of the deleted file. Repeating for them the conversion operation, we
get number 03 - this is the start cluster of the file.

What we can see in the File Allocation Table at this moment?

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00000200 F8 FF FF FF FF FF 00 00 00 00 00 00 00 00 08 00 oyyyyy..........
00000210 09 00 0A 00 0B 00 0C 00 0D 00 FF FF 00 00 00 00yy....
00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Zeros! And it is good in our case - it means that these clusters are free, i.e.
most likely our file was not overwritten by another file’s data. Now we have
chain of clusters 3, 4, 5, 6 and we are ready to recover it.

Some explanations:

• We started looking from offset 6 because each cluster entry in FAT16 takes
2 bytes, our file starts from 3rd cluster, i.e. 3*2=6.

• We considered 4 clusters because cluster size on our drive is 32 Kb, our file
size is 112, 435 bytes, i.e. 3clusters*32Kb = 96Kb plus a little bit more.

• We assumed that this file was not fragmented, i.e. all clusters were located
consecutively. We need 4 clusters, we found 4 free consecutive clusters, so
this assumption sounds reasonable, although in real life it may be not true.

(i) Note: In many cases data cannot be successfully recovered, because the cluster chain
cannot be defined. This will occur when another file or folder is written on the same
drive as the one where the deleted file is located. Warning messages about this fact will
be displayed while recovering data using Active@ UNDELETE.

Defining a Cluster Chain in NTFS

When recovering in NTFS, a part of DATA attributes called Data Runs provides
the location of file clusters. In most cases, DATA attributes are stored in the
Master File Table (MFT) record. Finding the MFT record for a deleted file will
most likely lead to the location of the cluster’s chain.

In example below the DATA attribute is marked with a green color. Data Runs
inside the DATA attribute are marked as Bold.

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00012580 2E 00 70 00 70 00 74 00 80 00 00 00 48 00 00 00 ..p.p.t._...H...
00012590 01 00 00 00 00 00 04 00 00 00 00 00 00 00 00 00

The File Recovery Process 91
000125A0 6D 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 m.......@.......
000125B0 00 DC 00 00 00 00 00 00 00 DC 00 00 00 00 00 00 .U.......U......
000125C0 00 DC 00 00 00 00 00 00 31 6E EB C4 04 00 00 00 .U......1neA....
000125D0 FF FF FF FF 82 79 47 11 00 00 00 00 00 00 00 00 yyyy,yG.........

Decrypting Data Runs

Decrypting data runs can be accomplished using the following steps:

1 First byte (0x31) shows how many bytes are allocated for the length of the run
(0x1 in the example case) and for the first cluster offset (0x3 in our case).

2 Take one byte (0x6E) that points to the length of the run.

3 Pick up 3 bytes pointing to the start cluster offset (0xEBC404).

4 Changing bytes order we get first cluster of the file 312555 (equals 0x04C4EB).

5 Starting from this cluster we need to pick up 110 clusters (equals 0x6E).

6 Next byte (0x00) tells us that no more data runs exist.

7 Our file is not fragmented, so we have the only one data run.

8 Lastly, check to see if there is enough information (size of the file). Cluster size
is 512 bytes. There are 110 clusters, 110*512 = 56,320 bytes. Our file size was
defined as 56,320 bytes, so we have enough information now to recover the file
clusters.

Recovering the
Chain of Clusters

After the cluster chain is defined, the final task is to read and save the contents
of the defined clusters to another place, verifying their contents. With a chain of
clusters and standard formulae, it is possible to calculate each cluster offset
from the beginning of the drive. Formulae for calculating cluster offset vary,
depending on file system. Starting from the calculated offset, copy a volume of
data equal to the size of the chain of clusters into a newly-created file.

To calculate the cluster offset in a FAT drive, we need to know:

• Boot sector size

• Number of FAT-supported copies

• Size of one copy of FAT

• Size of main root folder

• Number of sectors per cluster

• Number of bytes per sector

NTFS format defines a linear space and calculating the cluster offset is simply a
matter of multiplying the cluster number by the cluster size.

Recovering Cluster Chain in FAT16

This section continues the examination of the deleted file MyFile.txt from
previous topics. By now we have chain of clusters numbered 3, 4, 5 and 6
identified for recovering. Our cluster consists of 64 sectors, sector size is 512
bytes, so cluster size is: 64*512 = 32,768 bytes = 32 Kb.

The first data sector is 535 (we have 1 boot sector, plus 2 copies of FAT times
251 sectors each, plus root folder 32 sectors, total 534 occupied by system
data sectors).

92 CHAPTER 7: DATA RECOVERY CONCEPTS
Clusters 0 and 1 do not exist, so the first data cluster is 2.

Cluster number 3 is next to cluster 2, i.e. it is located 64 sectors behind the first
data sector (535 + 64 = 599).

Equal offset of 306,668 byte from the beginning of the drive (0x4AE00).

With a help of low-level disk editor on the disk we can see our data starting with
offset 0x4AE00, or cluster 3, or sector 599:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
0004AE00 47 55 49 20 6D 6F 64 65 20 53 65 74 75 70 20 68 GUI mode Setup h
0004AE10 61 73 20 73 74 61 72 74 65 64 2E 0D 0A 43 3A 5C as started...C:\
0004AE20 57 49 4E 4E 54 5C 44 72 69 76 65 72 20 43 61 63 WINNT\Driver Cac

Because the cluster chain is consecutive, all we need to do is copy 112,435
bytes starting from this place. If the cluster chain was not consecutive, we
would need to re-calculate the offset for each cluster and copy 3 times the
value of 64*512 = 32768 bytes starting from each cluster offset. The last cluster
copy remainder, 14,131 bytes is calculated as 112,435 bytes - (3 * 32,768
bytes).

Recovering Cluster Chain in NTFS

In our example we just need to pick up 110 clusters starting from the cluster
312555.

Cluster size is 512 byte, so the offset of the first cluster would be 512 * 312555
= 160028160 = 0x0989D600

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

0989D600 D0 CF 11 E0 A1 B1 1A E1 00 00 00 00 00 00 00 00 ÐÏ.à¡±.á........
0989D610 00 00 00 00 00 00 00 00 3E 00 03 00 FE FF 09 00>...þÿ..
0989D620 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
0989D630 69 00 00 00 00 00 00 00 00 10 00 00 6B 00 00 00 i...........k...
0989D640 01 00 00 00 FE FF FF FF 00 00 00 00 6A 00 00 00þÿÿÿ....j...
0989D650 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

In the above data, data recovery is complete when data has been read from
this point through 110 clusters (56320 bytes). This data is copied to another
location.

The Partition Recovery Process 93
The Partition
Recovery Process

System Boot
Process

In some cases, the first indication of a problem with hard drive data is a refusal
of the machine to perform a bootstrap startup. For the machine to be able to
start properly, the following conditions must apply:

• Master Boot Record (MBR) exists and is safe

• Partition Table exists and contains at least one active partition

If the above is in place, executable code in the MBR selects an active partition
and passes control there, so it can start loading the standard files
(COMMAND.COM, NTLDR,...) depending on the file system type on that
partition.

If these files are missing or corrupted it will be impossible for the operating
system to boot - if you have ever seen the famous “NTLDR is missing...” error,
you understand the situation.

When using Active@ UNDELETE, the recovery software accesses the
damaged drive at a low level, bypassing the standard system boot process (this
is the same as if you instructed the computer to boot from another hard drive).
Once the computer is running in this recovery environment, it will help you to
see all other files and directories on the drive and allow you to copy data to a
safe place on another drive.

Partition Visibility

A more serious situation exists if your computer will start and cannot see a drive
partition or physical drive (see Note below). For the partition or physical drive to
be visible to the Operating System the following conditions must apply:

• Partition/Drive can be found via Partition Table

• Partition/Drive boot sector is safe

If the above conditions are true, the OS can read the partition or physical drive
parameters and display the drive in the list of the available drives.

If the file system is damaged (Root, FAT area on FAT12/FAT16/FAT32, or
system MFT records on NTFS) the drive's content might not be displayed and
we might see errors like “MFT is corrupted”, or “Drive is invalid”... If this is the
case it is less likely that you will be able to restore your data. Do not despair, as
there may be some tricks or tips to display some of the residual entries that are
still safe, allowing you to recover your data to another location.

Partition recovery describes two things:

Physical partition recovery. The goal is to identify the problem and write
information to the proper place on the hard drive so that the partition becomes
visible to the OS again. This can be done using manual Disk Editors along with
proper guidelines or using recovery software, designed specifically for this
purpose.

94 CHAPTER 7: DATA RECOVERY CONCEPTS
Active@ Partition Recovery software implements this approach.

Virtual partition recovery. The goal is to determine the critical parameters of
the deleted/damaged/overwritten partition and render it open to scanning in
order to display its content. This approach can be applied in some cases when
physical partition recovery is not possible (for example, partition boot sector is
dead) and is commonly used by recovery software. This process is almost
impossible to implement manually.

Active@ UNDELETE software implements this approach.

(i) Note: If your computer has two operating systems and you choose to start in Windows
95/98 or ME, these operating systems cannot see partitions that are formatted for
NTFS. This is normal operation for these operating systems. To view NTFS partitions,
you must be in a Windows NT/2000/XP environment.

Other Partition Recovery Topics

These topics related to the recovery of partitions apply to any file system:

• MBR is Damaged

• Partition is Deleted or Partition Table is Damaged

• Partition Boot Sector is Damaged

• Missing or Corrupted System Files

For these topics the following disk layout will be used:

Figure 7-9 Example Disk Info

The figure shows a system with two primary partitions (C:(NTFS) and H:(FAT))
and one extended partition having two logical drives (D: (FAT) and E:(NTFS))

MBR is Damaged The Master Boot Record (MBR) will be created when you create the first
partition on the hard disk. It is very important data structure on the disk. The
Master Boot Record contains the Partition Table for the disk and a small
amount of executable code for the boot start. The location is always the first
sector on the disk.

http://www.partition-recovery.com/
http://www.file-recovery.net/

The Partition Recovery Process 95
The first 446 (0x1BE) bytes are MBR itself, the next 64 bytes are the Partition
Table, the last two bytes in the sector are a signature word for the sector and
are always 0x55AA.

Blank Screen on Startup

For our disk layout we have MBR:

Physical Sector: Cyl 0, Side 0, Sector 1
000000000 33 C0 8E D0 BC 00 7C FB 50 07 50 1F FC BE 1B 7C 3AZ??.|uP.P.u?.|
000000010 BF 1B 06 50 57 B9 E5 01 F3 A4 CB BE BE 07 B1 04 ?..PW?a.o¤E??.±.
000000020 38 2C 7C 09 75 15 83 C6 10 E2 F5 CD 18 8B 14 8B 8,|.u.??.aoI.‹.‹
000000030 EE 83 C6 10 49 74 16 38 2C 74 F6 BE 10 07 4E AC i??.It.8,to?..N¬
000000040 3C 00 74 FA BB 07 00 B4 0E CD 10 EB F2 89 46 25 <.tu»..?.I.eo‰F%
000000050 96 8A 46 04 B4 06 3C 0E 74 11 B4 0B 3C 0C 74 05 –SF.?.<.t.?.<.t.
000000060 3A C4 75 2B 40 C6 46 25 06 75 24 BB AA 55 50 B4 :Au+@?F%.u$»?UP?
000000070 41 CD 13 58 72 16 81 FB 55 AA 75 10 F6 C1 01 74 AI.Xr.?uU?u.oA.t
000000080 0B 8A E0 88 56 24 C7 06 A1 06 EB 1E 88 66 04 BF .Sa?V$C.?.e.?f.?
000000090 0A 00 B8 01 02 8B DC 33 C9 83 FF 05 7F 03 8B 4E ..?..‹U3E?y..‹N
0000000A0 25 03 4E 02 CD 13 72 29 BE 46 07 81 3E FE 7D 55 %.N.I.r)?F.?>?}U
0000000B0 AA 74 5A 83 EF 05 7F DA 85 F6 75 83 BE 27 07 EB ?tZ?i.U…ou??'.e
0000000C0 8A 98 91 52 99 03 46 08 13 56 0A E8 12 00 5A EB S?‘R™.F..V.e..Ze
0000000D0 D5 4F 74 E4 33 C0 CD 13 EB B8 00 00 00 00 00 00 OOta3AI.e?......
0000000E0 56 33 F6 56 56 52 50 06 53 51 BE 10 00 56 8B F4 V3oVVRP.SQ?..V‹o
0000000F0 50 52 B8 00 42 8A 56 24 CD 13 5A 58 8D 64 10 72 PR?.BSV$I.ZX?d.r
000000100 0A 40 75 01 42 80 C7 02 E2 F7 F8 5E C3 EB 74 49 .@u.BˆC.a?o^AetI
000000110 6E 76 61 6C 69 64 20 70 61 72 74 69 74 69 6F 6E nvalid partition
000000120 20 74 61 62 6C 65 00 45 72 72 6F 72 20 6C 6F 61 table.Error loa
000000130 64 69 6E 67 20 6F 70 65 72 61 74 69 6E 67 20 73 ding operating s
000000140 79 73 74 65 6D 00 4D 69 73 73 69 6E 67 20 6F 70 ystem.Missing op
000000150 65 72 61 74 69 6E 67 20 73 79 73 74 65 6D 00 00 erating system..
000000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000180 00 00 00 8B FC 1E 57 8B F5 CB 00 00 00 00 00 00 ...‹u.W‹oE......
000000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000001A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000001B0 00 00 00 00 00 00 00 00 A6 34 1F BA 00 00 80 01 ¦4.?..ˆ.
0000001C0 01 00 07 FE 7F 3E 3F 00 00 00 40 32 4E 00 00 00 ...?>?...@2N...
0000001D0 41 3F 06 FE 7F 64 7F 32 4E 00 A6 50 09 00 00 00 A?.?d2N.¦P....
0000001E0 41 65 0F FE BF 4A 25 83 57 00 66 61 38 00 00 00 Ae.??J%?W.fa8...
0000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA U?

To simulate what will happen if the first sector has been damaged (by a virus,
for example), we will overwrite the first 16 bytes with zeros, as shown below:

000000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000010 BF 1B 06 50 57 B9 E5 01 F3 A4 CB BE BE 07 B1 04 ?..PW?a.o¤E??.±.

We have effectively destroyed the MBR at this point. When we try to restart the
computer, we see the hardware testing procedures, and then a blank screen
without any messages. This blank screen confirms that the piece of code at the
beginning of the MBR could not be executed properly. Error messages cannot
be displayed because the MBR cannot be run.

If we boot from a system floppy, however, we can see a hard drive FAT partition
and the files on it. We are able to perform standard operations like file copy,
program execution and so on. This is possible because only the first part of the
MBR has been damaged. The partition table is safe and we can access our
drives when we boot from the operating system installed on the other drive.

Operating System Not Found

In this next scenario, we explore what will happen if the sector signature (last
word 0x55AA) has been removed or damaged?

96 CHAPTER 7: DATA RECOVERY CONCEPTS
To explore this scenario, we write zeros to the location of sector signature, as
shown below:

Physical Sector: Cyl 0, Side 0, Sector 1
0000001E0 41 65 0F FE BF 4A 25 83 57 00 66 61 38 00 00 00 Ae.??J%?W.fa8...
0000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

When we try to boot now, we see the “Operating System not found” error
message.

When encountering this message on system boot, run Disk Viewer and check
the first physical sector on the hard drive to see whether it looks like a valid
MBR or not. Here are things to check:

• See if it is filled up with zeros or any other single character.

• Check whether error messages (like you can see above “Invalid partition
table”...) are present or not.

• Check whether the disk signature (0x55AA) is present.

The simplest way to repair or re-create the MBR is to run Microsoft's standard
utility called FDISK with a parameter /MBR. The command looks like the
sample below:

A:\> FDISK.EXE /MBR

FDISK is a standard utility included in MS-DOS, Windows 95, 98, ME.

If you have Windows NT / 2000 / XP, you can boot from startup floppy disks or
CD-ROM, choose Repair option during setup, and run Recovery Console.
When you are logged on, you can run FIXMBR command to repair the MBR.

Another alternative is to use a third party MBR recovery utility or if you've
created an MBR backup, repair the damaged MBR by restoring the backup
(Active@ Partition Recovery has such capabilities).

Recovering Data if the First Sector is Bad or Unreadable

In the Blank Screen simulation, above, we simulated the destroyed first sector
scenario. When you try to read the first sector using Disk Viewer/Editor you
should get an error message saying that the sector is unreadable. In this case
recovery software is unable to help you to bring the hard drive back to the
working condition, i.e. physical partition recovery is not possible.

The only thing that can be done is to scan and search for partitions (i.e. perform
virtual partition recovery). When something is found - display the data save it to
another location. Software, like Active@ File Recovery, Active@ UNERASER
for DOS will help you here.

Partition is Deleted
or Partition Table is

Damaged

The information about primary partitions and extended partition is contained in
the Partition Table, a 64-byte data structure, located in the same sector as the
Master Boot Record (cylinder 0, head 0, sector 1). The Partition Table conforms
to a standard layout, which is independent of the operating system. The last two
bytes in the sector are a signature word for the sector and are always 0x55AA.

The Partition Recovery Process 97
For our disk layout we have Partition Table:

 Physical Sector: Cyl 0, Side 0, Sector 1
0000001B0 80 01 €.
0000001C0 01 00 07 FE 7F 3E 3F 00 00 00 40 32 4E 00 00 00 ...?>?...@2N...
0000001D0 41 3F 06 FE 7F 64 7F 32 4E 00 A6 50 09 00 00 00 A?.?d2N.¦P....
0000001E0 41 65 0F FE BF 4A 25 83 57 00 66 61 38 00 00 00 Ae.??J%?W.fa8...
0000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA U?

We can see three existing entries and one empty entry:

• Partition 1, offset 0x01BE (446)

• Partition 2, offset 0x01CE (462)

• Partition 3, offset 0x01DE (478)

• Partition 4 - empty, offset 0x01EE (494)

Each Partition Table entry is 16 bytes long, making a maximum of four entries
available. Each partition entry has fields for Boot Indicator (BYTE), Starting
Head (BYTE), Starting Sector (6 bits), Starting Cylinder (10 bits), System ID
(BYTE), Ending Head (BYTE), Ending Sector (6 bits), Ending Cylinder (10 bits),
Relative Sector (DWORD), Total Sectors (DWORD).

Thus the MBR loader can assume the location and size of partitions. MBR
loader looks for the “active” partition, i.e. partition that has Boot Indicator equals
0x80 (the first one in our case) and passes control to the partition boot sector
for further loading.

Below, a number of situations are simulated demonstrating events which cause
a computer to hang while booting or in a data loss scenario:

1 No disk partition has been set to the Active state (Boot Indicator=0x80).

To simulate this scenario, remove the Boot Indicator from the first partition as
below:

0000001B0 00 01
0000001C0 01 00 07 FE 7F 3E 3F 00 00 00 40 32 4E 00 00 00 ...?>?...@2N...

When we try to boot now, we see an error message like “Operating System not
found”. This demonstrates a situation where the loader wants to pass control to
the active system, and cannot determine which partition is active and contains
the system.

2 A partition has been set to the Active state (Boot Indicator=0x80) but there are
no system files on that partition.

(This situation is possible if we had used FDISK and not selected the correct
active partition).

The Loader tries to pass control to the partition, fails, tries to boot again from
other devices like the floppy. If it fails to boot again, an error message like
“Non-System Disk or Disk Error” appears.

3 Partition entry has been deleted.

If the partition entry has been deleted, the next two partitions will move one line
up in the partition table, as below:

Physical Sector: Cyl 0, Side 0, Sector 1
0000001B0 80 00 €.
0000001C0 41 3F 06 FE 7F 64 7F 32 4E 00 A6 50 09 00 00 00 A?.?d2N.¦P....

98 CHAPTER 7: DATA RECOVERY CONCEPTS
0000001D0 41 65 0F FE BF 4A 25 83 57 00 66 61 38 00 00 00 Ae.??J%?W.fa8...
0000001E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA U?

If we try to boot now, the partition previous identified as “second” (FAT) partition
becomes the “first” and the loader will try to boot from it. If the operating system
does not exist within the partition, the same error messages appear.

4 Partition entry has been damaged.

To simulate this situation, write zeros to the location of the first partition entry.

Physical Sector: Cyl 0, Side 0, Sector 1
0000001B0 80 00 €.
0000001C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000001D0 41 3F 06 FE 7F 64 7F 32 4E 00 A6 50 09 00 00 00 A?.?d2N.¦P....
0000001E0 41 65 0F FE BF 4A 25 83 57 00 66 61 38 00 00 00 Ae.??J%?W.fa8...
0000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA U?

If we try to boot now, the MBR loader will try to read and interpret zeros (or
other garbage) as partition parameters. The error message will read “Missing
Operating System”.

Thus, the second step in partition recovery is to run Disk Viewer and to make
sure that the proper partition exists in the partition table and has been set as
active.

Can Recovery Software Help in the Above Scenarios?

Recovery Software can help in the following ways:

1 Discover and suggest you to choose the partition to be active (even FDISK
does so).

2 Discover and suggest you to choose the partition to be active.

3 Perform a free disk space scan to look for partition boot sector or remaining of
the deleted partition information in order to try to reconstruct Partition Table
entry for the deleted partition.

4 Perform all disk space scan to look for partition boot sector or remaining of the
damaged partition information in order to try to reconstruct Partition Table entry
for the damaged partition entry.

Why is the Partition Boot Sector so Important?

If recovery software finds it, all necessary parameters to reconstruct partition
entry in the Partition Table are there. (see Partition Boot Sector topic for
details).

What if a Partition Entry was Deleted Then Recreated and Re-formatted?

In this case, instead of the original partition entry we would have a new one and
everything would work fine except that later on we could recall that we had
some important data on the original partition. If you've created MBR, Partition
Table, Volume Sectors backup before the problem (for example, Active@
Partition Recovery and Active@ UNERASER can do this), you can virtually
restore it back and look for your data (in case if it has not been overwritten with
new data yet). Some advanced recovery tools also have an ability to scan the
disk surface and try to reconstruct previously deleted partition information from
the remnants of information (i.e. perform virtual partition recovery). However
there is no guarantee that you can recover anything.

The Partition Recovery Process 99
Partition Boot
Sector is Damaged

The Partition Boot Sector contains information, which the file system uses to
access the volume. On personal computers, the Master Boot Record uses the
Partition Boot Sector on the system partition to load the operating system
kernel files. Partition Boot Sector is the first sector of the Partition.

For our first NTFS partition we have boot sector:

Physical Sector: Cyl 0, Side 1, Sector 1
000000000 EB 5B 90 4E 54 46 53 20 20 20 20 00 02 01 00 00 e[?NTFS
000000010 00 00 00 00 00 F8 00 00 3F 00 FF 00 3F 00 00 00 o..?.y.?...
000000020 00 00 00 00 80 00 80 00 3F 32 4E 00 00 00 00 00 €.€.?2N.....
000000030 5B 43 01 00 00 00 00 00 1F 19 27 00 00 00 00 00 [C........'.....
000000040 02 00 00 00 08 00 00 00 10 EC 46 C4 00 47 C4 0C iFA.GA.
000000050 00 00 00 00 00 00 00 00 00 00 00 00 00 FA 33 C0 u3A
000000060 8E D0 BC 00 7C FB B8 C0 07 8E D8 C7 06 54 00 00 Z??.|u?A.ZOC.T..
000000070 00 C7 06 56 00 00 00 C7 06 5B 00 10 00 B8 00 0D .C.V...C.[...?..
000000080 8E C0 2B DB E8 07 00 68 00 0D 68 66 02 CB 50 53 ZA+Ue..h..hf.EPS
000000090 51 52 06 66 A1 54 00 66 03 06 1C 00 66 33 D2 66 QR.f?T.f....f3Of
0000000A0 0F B7 0E 18 00 66 F7 F1 FE C2 88 16 5A 00 66 8B .·...f?n?A?.Z.f‹
0000000B0 D0 66 C1 EA 10 F7 36 1A 00 88 16 25 00 A3 58 00 ?fAe.?6..?.%.?X.
0000000C0 A1 18 00 2A 06 5A 00 40 3B 06 5B 00 76 03 A1 5B ?..*.Z.@;.[.v.?[
0000000D0 00 50 B4 02 8B 16 58 00 B1 06 D2 E6 0A 36 5A 00 .P?.‹.X.±.O?.6Z.
0000000E0 8B CA 86 E9 8A 36 25 00 B2 80 CD 13 58 72 2A 01 ‹E†eS6%.?€I.Xr*.
0000000F0 06 54 00 83 16 56 00 00 29 06 5B 00 76 0B C1 E0 .T.?.V..).[.v.Aa
000000100 05 8C C2 03 D0 8E C2 EB 8A 07 5A 59 5B 58 C3 BE .?A.?ZAeS.ZY[XA?
000000110 59 01 EB 08 BE E3 01 EB 03 BE 39 01 E8 09 00 BE Y.e.?a.e.?9.e..?
000000120 AD 01 E8 03 00 FB EB FE AC 3C 00 74 09 B4 0E BB -.e..ue?¬<.t.?.»
000000130 07 00 CD 10 EB F2 C3 1D 00 41 20 64 69 73 6B 20 ..I.eoA..A disk
000000140 72 65 61 64 20 65 72 72 6F 72 20 6F 63 63 75 72 read error occur
000000150 72 65 64 2E 0D 0A 00 29 00 41 20 6B 65 72 6E 65 red....).A kerne
000000160 6C 20 66 69 6C 65 20 69 73 20 6D 69 73 73 69 6E l file is missin
000000170 67 20 66 72 6F 6D 20 74 68 65 20 64 69 73 6B 2E g from the disk.
000000180 0D 0A 00 25 00 41 20 6B 65 72 6E 65 6C 20 66 69 ...%.A kernel fi
000000190 6C 65 20 69 73 20 74 6F 6F 20 64 69 73 63 6F 6E le is too discon
0000001A0 74 69 67 75 6F 75 73 2E 0D 0A 00 33 00 49 6E 73 tiguous....3.Ins
0000001B0 65 72 74 20 61 20 73 79 73 74 65 6D 20 64 69 73 ert a system dis
0000001C0 6B 65 74 74 65 20 61 6E 64 20 72 65 73 74 61 72 kette and restar
0000001D0 74 0D 0A 74 68 65 20 73 79 73 74 65 6D 2E 0D 0A t..the system...
0000001E0 00 17 00 5C 4E 54 4C 44 52 20 69 73 20 63 6F 6D ...\NTLDR is com
0000001F0 70 72 65 73 73 65 64 2E 0D 0A 00 00 00 00 55 AA pressed.......U?

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

The printout is formatted in three sections:

• Bytes 0x00– 0x0A are the jump instruction and the OEM ID (shown in bold
print).

• Bytes 0x0B–0x53 are the BIOS Parameter Block (BPB) and the extended
BPB.

This block contains such essential parameters as:

• Bytes Per Sector (WORD, offset 0x0B),

n Sectors Per Cluster (BYTE, offset 0x0D),

n Media Descriptor (BYTE, offset 0x15),

n Sectors Per Track (WORD, offset 0x18),

n Number of Heads (WORD, offset 0x1A),

n Hidden Sectors (DWORD, offset 0x1C),

• Total Sectors (LONGLONG, offset 0x28), etc....

• The remaining code is the bootstrap code (that is necessary for the proper
system boot) and the end of sector marker (shown in bold print).

100 CHAPTER 7: DATA RECOVERY CONCEPTS
This sector is so important on NTFS, for example, that a duplicate of the boot
sector is located on the disk.

Boot Sector for FAT looks different, however its BPB contains parameters
similar to the above mentioned. There is no extra copy of this sector stored
anywhere, so recovery on FAT is not as convenient as it is on NTFS.

What Will Happen if Partition Boot Sector is Damaged or
Bad/Unreadable?

To simulate this scenario, we fill up several lines of the Partition Boot Sector
with zeros:

000000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000060 8E D0 BC 00 7C FB B8 C0 07 8E D8 C7 06 54 00 00 Z??.|u?A.ZOC.T..

If we try to boot, we'll see “Non System Disk” or “Disk Error”. After we fail to load
from it and from floppy, partition becomes unbootable.

Because a normally functioning system relies on the boot sector to access a
volume, it is highly recommended that you run disk-scanning tools such as
Chkdsk regularly, as well as back up all of your data files to protect against
data loss in case you lose access to the volume.

Tools like Active@ Partition Recovery and Active@ UNERASER allow you to
create a backup of the MBR, Partition Table and Volume Boot Sectors so that if
for some reason the system fails to boot, you can restore your partition
information and have access to files and folders on that partition.

What if This Sector is Damaged?

• If we do have backup of the whole disk or MBR/Boot Sectors we can try to
restore it from there.

• If we do not have backup, in case of NTFS we could try to locate a duplicate
of Partition Boot Sector and get information from there.

• If duplicate boot sector is not found, only virtual partition recovery might be
possible if we can determine critical partition parameters such as Sectors
per Cluster, etc.

Can I Fix NTFS Boot Sector Using Standard Windows NT/2000/XP Tools?

On NTFS a copy of the boot sector is stored in the middle or at the end of the
Volume.

You can boot from startup floppy disks or CD-ROM, choose the Repair option
during setup, and run Recovery Console. When you are logged on, you can
run the FIXBOOT command to try to fix boot sector.

Can Recovery Software Help in This Situation?

It can backup MBR, Partition Table and Boot Sectors and restore them in case
of damage.

The Partition Recovery Process 101
It can try to find out duplicate boot sector on the drive and re-create the original
one or perform virtual data recovery based on found partition parameters

Some advanced techniques allow assuming drive parameters even if duplicate
boot sector is not found (i.e. perform virtual partition recovery) and give the user
virtual access to the data on the drive to be able to copy them to the safer
location.

Missing or
Corrupted System

Files

For the operating system to boot properly, system files are required to be safe.

In case of Windows 95 / 98 / ME, these files are msdos.sys, config.sys,
autoexec.bat, system.ini, system.dat, user.dat, etc.

In case of Windows NT / 2000 / XP these files are: NTLDR, ntdetect.com,
boot.ini, located at the root folder of the bootable volume, Registry files (i.e.,
SAM, SECURITY, SYSTEM and SOFTWARE), etc.

If these files have been deleted, corrupted or damaged by a virus, Windows will
be unable to boot. You'll see error messages like “NTLDR is missing ...“.

The next step in the recovery process is to check the existence and safety of
system files (you won't able to check them all, but you must check at least
NTLDR, ntdetect.com, boot.ini which cause most problems).

To do it in Windows 95 / 98 / ME, boot in Command Prompt mode, or from a
bootable floppy and check the system files in the command line or with a help
of third party recovery software.

To do it in Windows NT / 2000 / XP, use the Emergency Repair Process,
Recovery Console or third party recovery software.

Emergency Repair Process

To proceed with Emergency Repair Process, you need an Emergency Repair
Disk (ERD). It is recommended to create an ERD after you install and
customize Windows. To create it, use the Backup utility from System
Tools. You can use the ERD to repair a damaged boot sector, damaged MBR,
repair or replace missing or damaged NT Loader (NTLDR) and ntdetect.com
files.

If you do not have an ERD, the emergency repair process can attempt to locate
your Windows installation and start repairing your system, but it may not be
able to do so.

To run the process, boot from a Windows bootable disk or CD, and choose the
Repair option when system suggests you to proceed with installation or
repairing. Then press R to run Emergency Repair Process and choose Fast or
Manual Repair option. Fast Repair is recommended for most users, Manual
Repair - for Administrators and advanced users only.

If the emergency repair process is successful, your computer will automatically
restart and you should have a working system

102 CHAPTER 7: DATA RECOVERY CONCEPTS
Recovery Console

Recovery Console is a command line utility similar to MS-DOS command line.
You can list and display folder content, copy, delete, replace files, format drives
and perform many other administrative tasks.

To run Recovery Console, boot from Windows bootable disks or CD and
choose the Repair option. When the system suggests you to proceed with
installation or repairing and then press C to run Recovery Console. You will be
asked which system you want to log on to and then for the Administrator's
password. After you logged on, you can display the drive's contents, check the
existence and safety of critical files and, for example, copy them back to restore
them if they have been accidentally deleted.

Recovery Software

Third party recovery software in most cases does not allow you to deal with
system files due to the risk of further damage to the system, however you can
use it to check for the existence and safety of these files, or to perform virtual
partition recovery.

2550 Argentia Road, Suite 218
Mississauga, Ontario
Canada L5N 5R1

http://www.active-undelete.com

Phone (905) 812-8434
Customer Service: sales@active-undelete.com
Technical Support : support@active-undelete.com

Active Data Recovery Software

http://www.active-undelete.com
mailto:sales@uneraser.com
mailto:support@uneraser.com
mailto:sales@active-undelete.com
mailto:support@active-undelete.com

	Getting Started with Active@ UNDELETE
	Overview of the Application
	What's New in Active@ UNDELETE
	Starting Active@ UNDELETE
	Data Recovery Tips

	Active@ UNDELETE Explorer
	Explorer Overview
	Navigation with Active@ UNDELETE Explorer
	Toolbar Commands
	Command Menu

	Explorer Tool Views
	Application Log
	Properties View
	Search
	Disk Hex Editor
	Drag’n’Drop Recovery

	Options Dialog Box
	Symbols and Icons Used in the Explorer
	Connecting to Active@ Remote Recovery Agent

	Using Active@ Undelete
	Outline of UNDELETE Steps
	Scanning Drives and Devices
	Scanning Drives for Deleted Files or Folders
	Scanning Physical Devices for Partitions and Drives.

	Searching for Deleted Files and Folders
	Simple Search
	Advanced Search

	Recovering Files and Folders
	Recovering Encrypted F iles

	Other Active@ UNDELETE Tools
	File Preview
	Save Hardware Diagnostic File
	Disk Images
	Virtual Drives
	Virtual Disk Arrays

	Active@ Undelete Wizards
	Virtual Disk Array Wizard
	Create Disk Image Wizard
	Open Disk Image Wizard

	Active@ UNDELETE Network Edition
	Active@ Remote Recovery Agent. Overview
	Using Active@ Remote Recovery Agent
	Active@ Remote Recovery Agent Options

	Understanding Advanced Undelete Process
	Overview
	Disk Scanning
	Defining the Chain of Clusters
	Recovering the Chain of Clusters

	Data Recovery Concepts
	Hard Disk Drive Basics
	Making Tracks
	Sectors and Clusters

	The FAT File System
	Structure of a FAT Volume
	File Allocation System
	FAT Root Folder
	FAT Folder Structure
	FAT32 Features

	The NTFS File System
	NTFS Partition Boot Sector
	NTFS Master File Table (MFT)
	NTFS File Types

	The File Recovery Process
	Disk Scanning for Deleted Entries
	Defining the Chain of Clusters
	Recovering the Chain of Clusters

	The Partition Recovery Process
	System Boot Process
	MBR is Damaged
	Partition is Deleted or Partition Table is Damaged
	Partition Boot Sector is Damaged
	Missing or Corrupted System Files

